171 research outputs found

    Perspective of buried oxide thickness variation on triple metal-gate (TMG) recessed-S/D FD-SOI MOSFET

    Get PDF
    Recently, Fully-Depleted Silicon on Insulator (FD-SOI) MOSFETs have been accepted as a favourable technology beyond nanometer nodes, and the technique of Recessed-Source/Drain (Re-S/D) has made it more immune in regards of various performance factors. However, the proper selection of Buried-Oxide (BOX) thickness is one of the major challenges in the design of FD-SOI based MOS devices in order to suppress the drain electric penetrations across the BOX interface efficiently. In this work, the effect of BOX thickness on the performance of TMG Re-S/D FD-SOI MOSFET has been presented at 60 nm gate length. The perspective of BOX thickness variation has been analysed on the basis of its surface potential profile and the extraction of the threshold voltage by performing two-dimensional numerical simulations. Moreover, to verify the short channel immunity, the impact of gate length scaling has also been discussed. It is found that the device attains two step-up potential profile with suppressed short channel effects. The outcomes reveal that the Drain Induced Barrier Lowering (DIBL) values are lower among conventional SOI MOSFETs. The device has been designed and simulated by using 2D numerical ATLAS Silvaco TCAD simulator

    Characterisation of thermal and coupling effects in advanced silicon MOSFETs

    Get PDF
    PhD ThesisNew approaches to metal-oxide-semiconductor field effect transistor (MOSFET) engineering emerge in order to keep up with the electronics market demands. Two main candidates for the next few generations of Moore’s law are planar ultra-thin body and buried oxide (UTBB) devices and three-dimensional FinFETs. Due to miniature dimensions and new materials with low thermal conductivity, performance of advanced MOSFETs is affected by self-heating and substrate effects. Self-heating results in an increase of the device temperature which causes mobility reduction, compromised reliability and signal delays. The substrate effect is a parasitic source and drain coupling which leads to frequency-dependent analogue behaviour. Both effects manifest themselves in the output conductance variation with frequency and impact analogue as well as digital performance. In this thesis self-heating and substrate effects in FinFETs and UTBB devices are characterised, discussed and compared. The results are used to identify trade-offs in device performance, geometry and thermal properties. Methods how to optimise the device geometry or biasing conditions in order to minimise the parasitic effects are suggested. To identify the most suitable technique for self-heating characterisation in advanced semiconductor devices, different methods of thermal characterisation (time and frequency domain) were experimentally compared and evaluated alongside an analytical model. RF and two different pulsed I-V techniques were initially applied to partially depleted silicon-on-insulator (PDSOI) devices. The pulsed I-V hot chuck method showed good agreement with the RF technique in the PDSOI devices. However, subsequent analysis demonstrated that for more advanced technologies the time domain methods can underestimate self-heating. This is due to the reduction of the thermal time constants into the nanosecond range and limitations of the pulsed I-V set-up. The reduction is related to the major increase of the surface to volume ratio in advanced MOSFETs. Consequently the work showed that the thermal properties of advanced semiconductor devices must be characterised within the frequency domain. For UTBB devices with 7-8 nm Si body and 10 nm ultra-thin buried oxide (BOX) the analogue performance degradation caused by the substrate effects can be stronger than the analogue performance degradation caused by self-heating. However, the substrate effects can be effectively reduced if the substrate doping beneath the buried ii oxide is adjusted using a ground plane. In the MHz – GHz frequency range the intrinsic voltage gain variation is reduced ~6 times when a device is biased in saturation if a ground plane is implemented compared with a device without a ground plane. UTBB devices with 25 nm BOX were compared with UTBB devices with 10 nm BOX. It was found that the buried oxide thinning from 25 nm to 10 nm is not critical from the thermal point of view as other heat evacuation paths (e.g. source and drain) start to play a role. Thermal and substrate effects in FinFETs were also analysed. It was experimentally shown that FinFET thermal properties depend on the device geometry. The thermal resistance of FinFETs strongly varies with the fin width and number of parallel fins, whereas the fin spacing is less critical. The results suggest that there are trade-offs between thermal properties and integration density, electrostatic control and design complexity, since these aspects depend on device geometry. The high frequency substrate effects were found to be effectively reduced in devices with sub-100 nm wide fins.Engineering and Physical Sciences Research Council (EPSRC) and EU fundin

    Reliability Investigations of MOSFETs using RF Small Signal Characterization

    Get PDF
    Modern technology needs and advancements have introduced various new concepts such as Internet-of-Things, electric automotive, and Artificial intelligence. This implies an increased activity in the electronics domain of analog and high frequency. Silicon devices have emerged as a cost-effective solution for such diverse applications. As these silicon devices are pushed towards higher performance, there is a continuous need to improve fabrication, power efficiency, variability, and reliability. Often, a direct trade-off of higher performance is observed in the reliability of semiconductor devices. The acceleration-based methodologies used for reliability assessment are the adequate time-saving solution for the lifetime's extrapolation but come with uncertainty in accuracy. Thus, the efforts to improve the accuracy of reliability characterization methodologies run in parallel. This study highlights two goals that can be achieved by incorporating high-frequency characterization into the reliability characteristics. The first one is assessing high-frequency performance throughout the device's lifetime to facilitate an accurate description of device/circuit functionality for high-frequency applications. Secondly, to explore the potential of high-frequency characterization as the means of scanning reliability effects within devices. S-parameters served as the high-frequency device's response and mapped onto a small-signal model to analyze different components of a fully depleted silicon-on-insulator MOSFET. The studied devices are subjected to two important DC stress patterns, i.e., Bias temperature instability stress and hot carrier stress. The hot carrier stress, which inherently suffers from the self-heating effect, resulted in the transistor's geometry-dependent magnitudes of hot carrier degradation. It is shown that the incorporation of the thermal resistance model is mandatory for the investigation of hot carrier degradation. The property of direct translation of small-signal parameter degradation to DC parameter degradation is used to develop a new S-parameter based bias temperature instability characterization methodology. The changes in gate-related small-signal capacitances after hot carrier stress reveals a distinct signature due to local change of flat-band voltage. The measured effects of gate-related small-signal capacitances post-stress are validated through transient physics-based simulations in Sentaurus TCAD.:Abstract Symbols Acronyms 1 Introduction 2 Fundamentals 2.1 MOSFETs Scaling Trends and Challenges 2.1.1 Silicon on Insulator Technology 2.1.2 FDSOI Technology 2.2 Reliability of Semiconductor Devices 2.3 RF Reliability 2.4 MOSFET Degradation Mechanisms 2.4.1 Hot Carrier Degradation 2.4.2 Bias Temperature Instability 2.5 Self-heating 3 RF Characterization of fully-depleted Silicon on Insulator devices 3.1 Scattering Parameters 3.2 S-parameters Measurement Flow 3.2.1 Calibration 3.2.2 De-embedding 3.3 Small-Signal Model 3.3.1 Model Parameters Extraction 3.3.2 Transistor Figures of Merit 3.4 Characterization Results 4 Self-heating assessment in Multi-finger Devices 4.1 Self-heating Characterization Methodology 4.1.1 Output Conductance Frequency dependence 4.1.2 Temperature dependence of Drain Current 4.2 Thermal Resistance Behavior 4.2.1 Thermal Resistance Scaling with number of fingers 4.2.2 Thermal Resistance Scaling with finger spacing 4.2.3 Thermal Resistance Scaling with GateWidth 4.2.4 Thermal Resistance Scaling with Gate length 4.3 Thermal Resistance Model 4.4 Design for Thermal Resistance Optimization 5 Bias Temperature Instability Investigation 5.1 Impact of Bias Temperature Instability stress on Device Metrics 5.1.1 Experimental Details 5.1.2 DC Parameters Drift 5.1.3 RF Small-Signal Parameters Drift 5.2 S-parameter based on-the-fly Bias Temperature Instability Characterization Method 5.2.1 Measurement Methodology 5.2.2 Results and Discussion 6 Investigation of Hot-carrier Degradation 6.1 Impact of Hot-carrier stress on Device performance 6.1.1 DC Metrics Degradation 6.1.2 Impact on small-signal Parameters 6.2 Implications of Self-heating on Hot-carrier Degradation in n-MOSFETs 6.2.1 Inclusion of Thermal resistance in Hot-carrier Degradation modeling 6.2.2 Convolution of Bias Temperature Instability component in Hot-carrier Degradation 6.2.3 Effect of Source and Drain Placement in Multi-finger Layout 6.3 Vth turn-around effect in p-MOSFET 7 Deconvolution of Hot-carrier Degradation and Bias Temperature Instability using Scattering parameters 7.1 Small-Signal Parameter Signatures for Hot-carrier Degradation and Bias Temperature Instability 7.2 TCAD Dynamic Simulation of Defects 7.2.1 Fixed Charges 7.2.2 Interface Traps near Gate 7.2.3 Interface Traps near Spacer Region 7.2.4 Combination of Traps 7.2.5 Drain Series Resistance effect 7.2.6 DVth Correction 7.3 Empirical Modeling based deconvolution of Hot-carrier Degradation 8 Conclusion and Recommendations 8.1 General Conclusions 8.2 Recommendations for Future Work A Directly measured S-parameters and extracted Y-parameters B Device Dimensions for Thermal Resistance Modeling C Frequency response of hot-carrier degradation (HCD) D Localization Effect of Interface Traps Bibliograph

    FOSS as an efficient tool for extraction of MOSFET compact model parameters

    Get PDF
    A GNU Octave - based application for device-level compact model evaluation and parameter extraction has been developed. The applications main features are as follows: experimental I-V data importing, generating input data for different circuit simulation programs, running the simulation program to calculate I-V characteristics of the specified models, calculating model misfit and its sensitivity to selected parameter variation, and the comparison of experimental and simulated characteristics. Measured I-V data stored by different measurement systems are accepted. Circuit simulations may be done with Ngspice, Qucs and LTSpiceIV © . Selected aspects of the application are presented and discussed

    Technology Roadmap for Beyond 5G Wireless Connectivity in D-band

    Get PDF
    International audienceWireless communication in millimeter wave bands, namely above 20 GHz and up to 300 GHz is foreseen as a key enabler technology for the next generation of wireless systems. The huge available bandwidth is contemplated to achieve high data rate wireless communications, and hence, to fulfill the requirements of future wireless networks. Several Beyond 5G applications are considered for these systems: high capacity back-haul, enhanced hot-spot kiosk as well as short-range Device-to-Device communications. In this paper we propose to discuss the trade-offs between scenario requirements and current silicon technologies limits to draw a technology roadmap for the next generation of wireless connectivity in D-band

    Simulation study of the impact of quantum confinement on the electrostatically driven oerformance of n-type nanowire transistors

    Get PDF
    In this paper, we have studied the impact of quantum confinement on the performance of n-type silicon nanowire transistors (NWTs) for application in advanced CMOS technologies. The 3-D drift-diffusion simulations based on the density gradient approach that has been calibrated with respect to the solution of the Schrödinger equation in 2-D cross sections along the direction of the transport are presented. The simulated NWTs have cross sections and dimensional characteristics representative of the transistors expected at a 7-nm CMOS technology. Different gate lengths, cross-sectional shapes, spacer thicknesses, and doping steepness were considered. We have studied the impact of the quantum corrections on the gate capacitance, mobile charge in the channel, drain-induced barrier lowering, and subthreshold slope. The mobile charge to gate capacitance ratio, which is an indicator of the intrinsic speed of the NWTs, is also investigated. We have also estimated the optimal gate length for different NWT design conditions

    Design of analog predistorter

    Get PDF
    Abstract. In this thesis, two analog predistorter circuits are designed for linearizing the CMOS power amplifier in MIMO transceivers. The first circuit uses two parallel transistors as conventional derivative superposition, where derivatives of the transistor drain currents are biased to have opposite phases for 3rd-order distortion components. This results in the cancellation and thus providing a very linear 3rd-order response. The other design, using complementary derivative superposition topology, has p- and n-type transistors with a common drain self-biasing to achieve expansive power gain. This is used to improve the 1-dB compression point of the CMOS power amplifier. Simulation results of conventional derivative superposition circuit show over 25 dB improvement in distortion level, while still providing a fair amount of power gain. Implementation with a CMOS power amplifier shows a 2.6 dB improvement in 1 dB compression point. With the circuit having expansive characteristics, adjustable gain-expansion behaviour is achieved. With the implemented digital bias control, expansion between 2.5 dB and 4 dB is achieved, with gain variation between -2.4 dB and 1 dB. With a CMOS power amplifier, 3.5 dB improvement in 1 dB compression point is achieved, allowing the power amplifier to be used with greater efficiency. Both circuits are implemented using 22nm CMOS SOI technology and submitted to fabrication

    Energy challenges for ICT

    Get PDF
    The energy consumption from the expanding use of information and communications technology (ICT) is unsustainable with present drivers, and it will impact heavily on the future climate change. However, ICT devices have the potential to contribute signi - cantly to the reduction of CO2 emission and enhance resource e ciency in other sectors, e.g., transportation (through intelligent transportation and advanced driver assistance systems and self-driving vehicles), heating (through smart building control), and manu- facturing (through digital automation based on smart autonomous sensors). To address the energy sustainability of ICT and capture the full potential of ICT in resource e - ciency, a multidisciplinary ICT-energy community needs to be brought together cover- ing devices, microarchitectures, ultra large-scale integration (ULSI), high-performance computing (HPC), energy harvesting, energy storage, system design, embedded sys- tems, e cient electronics, static analysis, and computation. In this chapter, we introduce challenges and opportunities in this emerging eld and a common framework to strive towards energy-sustainable ICT

    Low-Temperature Technologies and Applications

    Get PDF
    This book on low-temperature technology is a notable collection of different aspects of the technology and its application in varieties of research and practical engineering fields. It contains, sterilization and preservation techniques and their engineering and scientific characteristics. Ultra-low temperature refrigeration, the refrigerants, applications, and economic aspects are highlighted in this issue. The readers will find the low temperature, and vacuum systems for industrial applications. This book has given attention to global energy resources, conservation of energy, and alternative sources of energy for the application of low-temperature technologies
    corecore