10,600 research outputs found

    A framework for a European network for a systematic environmental impact assessment of genetically modified organisms (GMO)

    Get PDF
    The assessment of the impacts of growing genetically modified (GM) crops remains a major political and scientific challenge in Europe. Concerns have been raised by the evidence of adverse and unexpected environmental effects and differing opinions on the outcomes of environmental risk assessments (ERA). The current regulatory system is hampered by insufficiently developed methods for GM crop safety testing and introduction studies. Improvement to the regulatory system needs to address the lack of well designed GM crop monitoring frameworks, professional and financial conflicts of interest within the ERA research and testing community, weaknesses in consideration of stakeholder interests and specific regional conditions, and the lack of comprehensive assessments that address the environmental and socio economic risk assessment interface. To address these challenges, we propose a European Network for systematic GMO impact assessment (ENSyGMO) with the aim directly to enhance ERA and post-market environmental monitoring (PMEM) of GM crops, to harmonize and ultimately secure the long-term socio-political impact of the ERA process and the PMEM in the EU. These goals would be achieved with a multi-dimensional and multi-sector approach to GM crop impact assessment, targeting the variability and complexity of the EU agro-environment and the relationship with relevant socio-economic factors. Specifically, we propose to develop and apply methodologies for both indicator and field site selection for GM crop ERA and PMEM, embedded in an EU-wide typology of agro-environments. These methodologies should be applied in a pan-European field testing network using GM crops. The design of the field experiments and the sampling methodology at these field sites should follow specific hypotheses on GM crop effects and use state-of-the art sampling, statistics and modelling approaches. To address public concerns and create confidence in the ENSyGMO results, actors with relevant specialist knowledge from various sectors should be involved

    The Digitalisation of African Agriculture Report 2018-2019

    Get PDF
    An inclusive, digitally-enabled agricultural transformation could help achieve meaningful livelihood improvements for Africa’s smallholder farmers and pastoralists. It could drive greater engagement in agriculture from women and youth and create employment opportunities along the value chain. At CTA we staked a claim on this power of digitalisation to more systematically transform agriculture early on. Digitalisation, focusing on not individual ICTs but the application of these technologies to entire value chains, is a theme that cuts across all of our work. In youth entrepreneurship, we are fostering a new breed of young ICT ‘agripreneurs’. In climate-smart agriculture multiple projects provide information that can help towards building resilience for smallholder farmers. And in women empowerment we are supporting digital platforms to drive greater inclusion for women entrepreneurs in agricultural value chains

    Implementation Action Plan for organic food and farming research

    Get PDF
    The Implementation Action Plan completes TP Organics’ trilogy of key documents of the Research Vision to 2025 (Niggli et al 2008) and the Strategic Research Agenda (Schmid et al 2009). The Implementation Action Plan addresses important areas for a successful implementation of the Strategic Research Agenda. It explores the strength of Europe’s organic sector on the world stage with about one quarter of the world’s organic agricultural land in 2008 and accounting for more than half of the global organic market. The aims and objectives of organic farming reflect a broad range of societal demands on the multiple roles of agriculture and food production of not only producing commodities but also ecosystem services. These are important for Europe’s economic success, the resilience of its farms and prosperity in its rural areas. The organic sector is a leading market for quality and authenticity: values at the heart of European food culture. Innovation is important across the EU economy, and no less so within the organic sector. The Implementation Action Plan devotes its third chapter to considering how innovation can be stimulated through organic food and farming research and, crucially, translated into changes in business and agricultural practice. TP Organics argues for a broad understanding of innovation that includes technology, know-how and social/organisational innovations. Accordingly, innovation can involve different actors throughout the food sector. Many examples illustrate innovations in the organic sector includign and beyond technology. The various restrictions imposed by organic standards have driven change and turned organic farms and food businesses into creative living laboratories for smart and green innovations and the sector will continue to generate new examples. The research topics proposed by TP Organics in the Strategic Research Agenda can drive innovation in areas as wide ranging as production practices for crops, technologies for livestock, food processing, quality management, on-farm renewable energy or insights into the effects of consumption of organic products on disease and wellbeing and life style of citizens. Importantly, many approaches developed within the sector are relevant and useful beyond the specific sector. The fourth chapter addresses knowledge management in organic agriculture, focusing on the further development of participatory research methods. Participatory (or trans-disciplinary) models recognise the worth and importance of different forms of knowledge and reduced boundaries between the generators and the users of knowledge, while respecting and benefitting from transparent division of tasks. The emphasis on joint creation and exchange of knowledge makes them valuable as part of a knowledge management toolkit as they have the capacity to enhance the translation of research outcomes into practical changes and lead to real-world progress. The Implementation Action Plan argues for the wider application of participatory methods in publicly-funded research and also proposes some criteria for evaluating participatory research, such as the involvement and satisfaction of stakeholders as well as real improvements in sustainability and delivery of public goods/services. European agriculture faces specific challenges but at the same time Europe has a unique potential for the development of agro-ecology based solutions that must be supported through well focused research. TP Organics believes that the most effective approaches in agriculture and food research will be systems-based, multi- and trans-disciplinary, and that in the development of research priorities, the interconnections between biodiversity, dietary diversity, functional diversity and health must be taken into account. Chapter five of the action plan identifies six themes which could be used to organise research and innovation activities in agriculture under Europe’s 8th Framework Programme on Research Cooperation: ‱ Eco-functional intensification – A new area of agricultural research which aims to harness beneficial activities of the ecosystem to increase productivity in agriculture. ‱ The economics of high output / low input farming Developing reliable economic and environmental assessments of new recycling, renewable-based and efficiency-boosting technologies for agriculture. ‱ Health care schemes for livestock Shifting from therapeutics to livestock health care schemes based on good husbandry and disease prevention. ‱ Resilience and “sustainagility” Dealing with a more rapidly changing environment by focusing on ‘adaptive capacity’ to help build resilience of farmers, farms and production methods. ‱ From farm diversity to food diversity and health and wellbeing of citizens Building on existing initiatives to reconnect consumers and producers, use a ‘whole food chain’ approach to improve availability of natural and authentic foods. ‱ Creating centres of innovation in farming communities A network of centres in Europe applying and developing trans-disciplinary and participatory scientific approaches to support innovation among farmers and SMEs and improving research capacities across Europe

    User-centred design of a digital advisory service: enhancing public agricultural extension for sustainable intensification in Tanzania

    Get PDF
    Sustainable intensification (SI) is promoted as a rural development paradigm for sub-Saharan Africa. Achieving SI requires smallholder farmers to have access to information that is context-specific, increases their decision-making capacities, and adapts to changing environments. Current extension services often struggle to address these needs. New mobile phone-based services can help. In order to enhance the public extension service in Tanzania, we created a digital service that addresses smallholder farmers’ different information needs for implementing SI. Using a co-design methodology – User-Centered Design – we elicited feedback from farmers and extension agents in Tanzania to create a new digital information service, called Ushauri. This automated hotline gives farmers access to a set of pre-recorded messages. Additionally, farmers can ask questions in a mailbox. Extension agents then listen to these questions through an online platform, where they record and send replies via automated push-calls. A test with 97 farmers in Tanzania showed that farmers actively engaged with the service to access agricultural advice. Extension agents were able to answer questions with reduced workload compared to conventional communication channels. This study illustrates how User-Centered Design can be used to develop information services for complex and resource-restricted smallholder farming contexts

    Sustainable development : a model Indonesian SRI co-operative : this research paper is presented in partial fulfilment of the requirements for the degree of Master of International Development, Massey University, New Zealand

    Get PDF
    This research report explores how ‘sustainable livelihoods’ have been achieved at a model cooperative using the ‘System of Rice Intensification’ named SIMPATIK. To conduct the research a novel template was developed. The framework was required following a review of sustainable livelihood literature which found deficiencies with the ‘sustainable livelihoods framework’, particularly its treatment of equity, social capital, culture and agro-ecology which disqualified the framework as an appropriate approach for the research. Amekawa’s (2011) ‘Integrated Sustainable Livelihoods Framework’ which synthesises agro-ecology and the sustainable livelihoods framework is then discussed. Further work is then presented on social capital which this paper argues has a critical role in facilitating access to livelihood capitals. A discussion of the significance of culture then follows to underline its importance as a form of livelihood capital. The research then introduces an operational model that is appropriate to the local cultural, institutional and geographical context to demonstrate how livelihood capitals are linked to livelihood outcomes, a model I have labelled the ‘Apt-Integrated Sustainable Livelihoods Framework’. This framework is then informed through field research at the SIMPATIK co-operative. Impact pathways through ‘synergetic forms of social capital’ and the System of Rice Intensification (SRI) are shown indeed to lead to sustainable livelihood outcomes for research participants. The ‘sequencing’ of livelihood capitals is seen to be critical and the research culminates in the development of a ‘SRI Co-operative Template for Sustainable Livelihoods’; a transferable model that shows how SRI can be promoted as a sustainable livelihood strategy

    Research collaboration between China and Denmark for development of systemic approaches to agro-ecological pest management without pesticides with focus on vegetable, fruit and berry crops. Proceedings and recommendations from two network workshops

    Get PDF
    This report is the result of a network project which was established to discuss the potential for collaboration on development of systemic approaches to pest management without pesticides between Chinese and Danish researchers. The focus is on systemic approaches rather than input substitution of synthetic chemicals with agents of natural origin, however, the latter is considered as an integrated tool for the development and design of systemic approaches. The discussions were, furthermore, limited to management of invertebrate pests as well as diseases, while other pests such as weeds have not been included in the discussions. The discussions took place at two workshops and were based on presentations of research from the two countries and field visits in China and Denmark. After the first workshop that took place in China, it was agreed that Chinese and Danish researchers in this particular field had mutual interests and priorities and that there was a potential for creating collaboration that could yield results beneficial for the agricultural/horticultural sectors in both countries. It was also agreed that in spite of the many differences between variation in climate and ecosystems, as well as in farming systems and their organization in China and Denmark, there were many similarities in the production of high-value crops in the two countries, such as vegetables, fruit and berries and, therefore, an obvious focus for joint research efforts. It was also agreed that joint research efforts could aim at specific crops as well as aiming at the development of specific research approaches. Based on the observations and the agreements of the first workshop, the second workshop, which took place in Denmark, focused more specifically on the development of a research framework with specified research questions/topics. Two groups were formed – one working with vegetables and one with fruit and berries working in parallel – both looking into what kind of research is needed for development of systemic approaches to pesticide-free pest management should include both well-known practices and new practices. Although the discussions in the two groups took separate routes and unfolded and described the research topics in each their way, there was a clear consistency between the outputs of the work of the two groups. Each had identified three main research themes that more or less followed the same line and has been merged into three specific recommendations on themes for collaboration, namely: 1) ‘Research to provide the biological foundation and understanding of mechanisms and interactions for development of non-chemical solutions and to improve efficiency of new and existing control methods for severe pest problems’. 2) Research in ‘How best to integrate multifunctional plants (and crops) and use diversification to create a more healthy and productive farming system which is resilient to pests?’ 3) Research in ‘How to design and integrate pest management in eco-functional cropping systems at field and farm/landscape level?

    The use of participatory processes in wide-scale dissemination of micro dosing and conservation agriculture in Zimbabwe

    Get PDF
    Participatory technology development has been used for quite some time. However, little is known about how farmers perceive participatory methods and processes. Understanding farmers’ concerns about the participatory process can be an important starting point and can further the ultimate aim of encouraging sustained technology adoption. An ex-post participatory technology development and transfer evaluation was carried out in Zimbabwe in 2006/07 involving 231 farmers. It was revealed that use of demonstration trials encouraged the most participation and subsequent adoption and adaptation of the technologies to suit specific needs. The participatory nature of the process encouraged greater knowledge sharing among farmers and gave them more confidence in the technology. In order to increase the gains of the participatory process, feedback loops should be built in to allow improvements and modifications to be made to the techniques being promoted.Participatory approach, technology, dissemination, adoption, transfer, Research and Development/Tech Change/Emerging Technologies,
    • 

    corecore