14 research outputs found

    Combining Haar Wavelet and Karhunen Loeve Transforms for Medical Images Watermarking

    No full text
    International audienceThis paper presents a novel watermarking method, applied to the medical imaging domain, used to embed the patient's data into the corresponding image or set of images used for the diagnosis. The main objective behind the proposed technique is to perform the watermarking of the medical images in such a way that the three main attributes of the hidden information (i.e. imperceptibility, robustness, and integration rate) can be jointly ameliorated as much as possible. These attributes determine the effectiveness of the watermark, resistance to external attacks and increase the integration rate. In order to improve the robustness, a combination of the characteristics of Discrete Wavelet and Karhunen Loeve Transforms is proposed. The Karhunen Loeve Transform is applied on the sub-blocks (sized 8x8) of the different wavelet coefficients (in the HL2, LH2 and HH2 subbands). In this manner, the watermark will be adapted according to the energy values of each of the Karhunen Loeve components, with the aim of ensuring a better watermark extraction under various types of attacks. For the correct identification of inserted data, the use of an Errors Correcting Code (ECC) mechanism is required for the check and, if possible, the correction of errors introduced into the inserted data. Concerning the enhancement of the imperceptibility factor, the main goal is to determine the optimal value of the visibility factor, which depends on several parameters of the DWT and the KLT transforms. As a first step, a Fuzzy Inference System (FIS) has been set up and then applied to determine an initial visibility factor value. Several features extracted from the Co-Occurrence matrix are used as an input to the FIS and used to determine an initial visibility factor for each block; these values are subsequently re-weighted in function of the eigenvalues extracted from each sub-block. Regarding the integration rate, the previous works insert one bit per coefficient. In our proposal, the integration of the data to be hidden is 3 bits per coefficient so that we increase the integration rate by a factor of magnitude 3

    A novel Watermarking Technique Based on Hybrid Transforms

    Get PDF
    This paper proposed Anovel watermarking scheme using hybrid of  Dual Tree Complex Wavelet Transform and singular value decomposition . Image watermarking is to embed copyright data in image bit streams. Our proposed technique demonestrates  the effective and robust of image watermarking algorithms using a hybrid of two strong mathematical transforms; the 2-level Dual Tree Complex Wavelet Transform (DT-CWT) and Singular Value Decomposition (SVD). This technique shows high level of security and robustness against attacks. The algorithm was tested for imperceptibility and robustness and the results were compared with DWT-SVD-based technique, it is shown that the proposed watermarking schemes is considerably more robust and effective

    A new feature-based wavelet completed local ternary pattern (FEAT-WCLTP) for texture and medical image classification

    Get PDF
    Nowadays, texture image descriptors are used in many important real-life applications. The use of texture analysis in texture and medical image classification has attracted considerable attention. Local Binary Patterns (LBP) is one of the simplest yet eff ective texture descriptors. But it has some limitations that may affect its accuracy. Hence, different variants of LBP were proposed to overcome LBP’s drawbacks and enhance its classification accuracy. Completed local ternary pattern (CLTP) is one of the significant LBP variants. However, CLTP suffers from two main limitations: the selection of the threshold value is manually based and the high dimensionality which is negatively affected the descriptor performance and leads to high computations. This research aims to improve the classification accuracy of CLTP and overcome the computational limitation by proposing new descriptors inspired by CLTP. Therefore, this research introduces two contributions: The first one is a proposed new descriptor that integrates redundant discrete wavelet transform (RDWT) with the original CLTP, namely, wavelet completed local ternary pattern (WCLTP). Extracting CLTP in wavelet transform will help increase the classification accuracy due to the shift invariant property of RDWT. Firstly, the image is decomposed into four sub-bands (LL, LH, HL, HH) by using RDWT. Then, CLTP is extracted based on the LL wavelet coefficients. The latter one is the reduction in the dimensionality of WCLTP by reducing its size and a proposed new texture descriptor, namely, feature-based wavelet completed local ternary pattern (FeatWCLTP). The proposed Feat-WCLTP can enhance CLTP’s performance and reduce high dimensionality. The mean and variance of the values of the selected texture pattern are used instead of the normal magnitude texture descriptor of CLTP. The performance of the proposed WCLTP and Feat-WCLTP was evaluated using four textures (i.e. OuTex, CUReT, UIUC and Kylberg) and two medical (i.e. 2D HeLa and Breast Cancer) datasets then compared with several well-known LBP variants. The proposed WCLTP outperformed the previous descriptors and achieved the highest classification accuracy in all experiments. The results for the texture dataset are 99.35% in OuTex, 96.57% in CUReT, 94.80% in UIUC and 99.88% in the Kylberg dataset. The results for the medical dataset are 84.19% in the 2D HeLa dataset and 92.14% in the Breast Cancer dataset. The proposed Feat-WCLTP not only overcomes the dimensionality problem but also considerably improves the classification accuracy. The results for Feat-WCLTP for texture dataset are 99.66% in OuTex, 96.89% in CUReT, 95.23% in UIUC and 99.92% in the Kylberg dataset. The results for the medical dataset are 84.42% in the 2D HeLa dataset and 89.12% in the Breast Cancer dataset. Moreover, the proposed Feat-WCLTP reduces the size of the feature vector for texture pattern (1,8) to 160 bins instead of 400 bins in WCLTP. The proposed WCLTP and Feat-WCLTP have better classification accuracy and dimensionality than the original CLTP

    Optimized DWT Based Digital Image Watermarking and Extraction Using RNN-LSTM

    Get PDF
    The rapid growth of Internet and the fast emergence of multi-media applications over the past decades have led to new problems such as illegal copying, digital plagiarism, distribution and use of copyrighted digital data. Watermarking digital data for copyright protection is a current need of the community. For embedding watermarks, robust algorithms in die media will resolve copyright infringements. Therefore, to enhance the robustness, optimization techniques and deep neural network concepts are utilized. In this paper, the optimized Discrete Wavelet Transform (DWT) is utilized for embedding the watermark. The optimization algorithm is a combination of Simulated Annealing (SA) and Tunicate Swarm Algorithm (TSA). After performing the embedding process, the extraction is processed by deep neural network concept of Recurrent Neural Network based Long Short-Term Memory (RNN-LSTM). From the extraction process, the original image is obtained by this RNN-LSTM method. The experimental set up is carried out in the MATLAB platform. The performance metrics of PSNR, NC and SSIM are determined and compared with existing optimization and machine learning approaches. The results are achieved under various attacks to show the robustness of the proposed work

    A Review of Voice-Base Person Identification: State-of-the-Art

    Get PDF
    Automated person identification and authentication systems are useful for national security, integrity of electoral processes, prevention of cybercrimes and many access control applications. This is a critical component of information and communication technology which is central to national development. The use of biometrics systems in identification is fast replacing traditional methods such as use of names, personal identification numbers codes, password, etc., since nature bestow individuals with distinct personal imprints and signatures. Different measures have been put in place for person identification, ranging from face, to fingerprint and so on. This paper highlights the key approaches and schemes developed in the last five decades for voice-based person identification systems. Voice-base recognition system has gained interest due to its non-intrusive technique of data acquisition and its increasing method of continually studying and adapting to the person’s changes. Information on the benefits and challenges of various biometric systems are also presented in this paper. The present and prominent voice-based recognition methods are discussed. It was observed that these systems application areas have covered intelligent monitoring, surveillance, population management, election forensics, immigration and border control
    corecore