99 research outputs found

    Exploiting emergent schemas to make RDF systems more efficient

    Get PDF
    We build on our earlier finding that more than 95 % of the triples in actual RDF triple graphs have a remarkably tabular structure, whose schema does not necessarily follow from explicit metadata such as ontologies, but for which an RDF store can automatically derive by looking at the data using so-called “emergent schema” detection techniques. In this paper we investigate how computers and in particular RDF stores can take advantage from this emergent schema to more compactly store RDF data and more efficiently optimize and execute SPARQL queries. To this end, we contribute techniques for efficient emergent schema aware RDF storage and new query operator algorithms for emergent schema aware scans and joins. In all, these techniques allow RDF schema processors fully catch up with relational database techniques in terms of rich physical database design options and efficiency, without requiring a rigid upfront schema structure definition

    Federating Queries to RDF repositories

    Get PDF
    Currently large amounts of RDF data are being published in the Web. These data is commonly accessed by means of SPARQL endpoints. However to query a set of SPARQL endpoints new mechanisms are needed due to neither the SPARQL protocol nor the language provide any norms or guidelines about how to proceed. In this paper we present an approach for federating queries to a set of SPARQL endpoints, using relational database distributed query processing techniques and part of the WS-DAI specification for web-service based access to relational and XML databases

    Towards Making Distributed RDF processing FLINker

    Get PDF
    In the last decade, the Resource Description Framework (RDF) has become the de-facto standard for publishing semantic data on the Web. This steady adoption has led to a significant increase in the number and volume of available RDF datasets, exceeding the capabilities of traditional RDF stores. This scenario has introduced severe big semantic data challenges when it comes to managing and querying RDF data at Web scale. Despite the existence of various off-the-shelf Big Data platforms, processing RDF in a distributed environment remains a significant challenge. In this position paper, based on an indepth analysis of the state of the art, we propose to manage large RDF datasets in Flink, a well-known scalable distributed Big Data processing framework. Our approach, which we refer to as FLINKer extends the native graph abstraction of Flink, called Gelly, with RDF graph and SPARQL query processing capabilities

    The {RDF}-3X Engine for Scalable Management of {RDF} Data

    Get PDF
    RDF is a data model for schema-free structured information that is gaining momentum in the context of Semantic-Web data, life sciences, and also Web 2.0 platforms. The ``pay-as-you-go'' nature of RDF and the flexible pattern-matching capabilities of its query language SPARQL entail efficiency and scalability challenges for complex queries including long join paths. This paper presents the RDF-3X engine, an implementation of SPARQL that achieves excellent performance by pursuing a RISC-style architecture with streamlined indexing and query processing. The physical design is identical for all RDF-3X databases regardless of their workloads, and completely eliminates the need for index tuning by exhaustive indexes for all permutations of subject-property-object triples and their binary and unary projections. These indexes are highly compressed, and the query processor can aggressively leverage fast merge joins with excellent performance of processor caches. The query optimizer is able to choose optimal join orders even for complex queries, with a cost model that includes statistical synopses for entire join paths. Although RDF-3X is optimized for queries, it also provides good support for efficient online updates by means of a staging architecture: direct updates to the main database indexes are deferred, and instead applied to compact differential indexes which are later merged into the main indexes in a batched manner. Experimental studies with several large-scale datasets with more than 50 million RDF triples and benchmark queries that include pattern matching, manyway star-joins, and long path-joins demonstrate that RDF-3X can outperform the previously best alternatives by one or two orders of magnitude
    • …
    corecore