13 research outputs found

    A brief review of neural networks based learning and control and their applications for robots

    Get PDF
    As an imitation of the biological nervous systems, neural networks (NN), which are characterized with powerful learning ability, have been employed in a wide range of applications, such as control of complex nonlinear systems, optimization, system identification and patterns recognition etc. This article aims to bring a brief review of the state-of-art NN for the complex nonlinear systems. Recent progresses of NNs in both theoretical developments and practical applications are investigated and surveyed. Specifically, NN based robot learning and control applications were further reviewed, including NN based robot manipulator control, NN based human robot interaction and NN based behavior recognition and generation

    A New Model-Free Method Combined with Neural Networks for MIMO Systems

    Full text link
    In this brief, a model-free adaptive predictive control (MFAPC) is proposed. It outperforms the current model-free adaptive control (MFAC) for not only solving the time delay problem in multiple-input multiple-output (MIMO) systems but also relaxing the current rigorous assumptions for sake of a wider applicable range. The most attractive merit of the proposed controller is that the controller design, performance analysis and applications are easy for engineers to realize. Furthermore, the problem of how to choose the matrix {\lambda} is finished by analyzing the function of the closed-loop poles rather than the previous contraction mapping method. Additionally, in view of the nonlinear modeling capability and adaptability of neural networks (NNs), we combine these two classes of algorithms together. The feasibility and several interesting results of the proposed method are shown in simulations

    Distributed Event-triggered Bipartite Consensus for Multi-agent Systems Against Injection Attacks

    Get PDF
    This paper studies fully distributed data-driven problems for nonlinear discrete-time multi-agent systems (MASs) with fixed and switching topologies preventing injection attacks. We first develop an enhanced compact form dynamic linearization model by applying the designed distributed bipartite combined measurement error function of the MASs. Then, a fully distributed event-triggered bipartite consensus (DETBC) framework is designed, where the dynamics information of MASs is no longer needed. Meanwhile, the restriction of the topology of the proposed DETBC method is further relieved. To prevent the MASs from injection attacks, neural network-based detection and compensation schemes are developed. Rigorous convergence proof is presented that the bipartite consensus error is ultimately boundedness. Finally, the effectiveness of the designed method is verified through simulations and experiment

    Learning-based Robust Bipartite Consensus Control for a Class of Multiagent Systems

    Get PDF
    This paper studies the robust bipartite consensus problems for heterogeneous nonlinear nonaffine discrete-time multi-agent systems (MASs) with fixed and switching topologies against data dropout and unknown disturbances. At first, the controlled system's virtual linear data model is developed by employing the pseudo partial derivative technique, and a distributed combined measurement error function is established utilizing a signed graph theory. Then, an input gain compensation scheme is formulated to mitigate the effects of data dropout in both feedback and forward channels. Moreover, a data-driven learning-based robust bipartite consensus control (LRBCC) scheme based on a radial basis function neural network observer is proposed to estimate the unknown disturbance, using the online input/output data without requiring any information on the mathematical dynamics. The stability analysis of the proposed LRBCC approach is given. Simulation and hardware testing also illustrate the correctness and effectiveness of the designed method

    Disturbance observer-based neural network control of cooperative multiple manipulators with input saturation

    Get PDF
    In this paper, the complex problems of internal forces and position control are studied simultaneously and a disturbance observer-based radial basis function neural network (RBFNN) control scheme is proposed to: 1) estimate the unknown parameters accurately; 2) approximate the disturbance experienced by the system due to input saturation; and 3) simultaneously improve the robustness of the system. More specifically, the proposed scheme utilizes disturbance observers, neural network (NN) collaborative control with an adaptive law, and full state feedback. Utilizing Lyapunov stability principles, it is shown that semiglobally uniformly bounded stability is guaranteed for all controlled signals of the closed-loop system. The effectiveness of the proposed controller as predicted by the theoretical analysis is verified by comparative experimental studies

    Performance Improvement of Low-Cost Iterative Learning-Based Fuzzy Control Systems for Tower Crane Systems

    Get PDF
    This paper is dedicated to the memory of Prof. Ioan Dzitac, one of the fathers of this journal and its founding Editor-in-Chief till 2021. The paper addresses the performance improvement of three Single Input-Single Output (SISO) fuzzy control systems that control separately the positions of interest of tower crane systems, namely the cart position, the arm angular position and the payload position. Three separate low-cost SISO fuzzy controllers are employed in terms of first order discrete-time intelligent Proportional-Integral (PI) controllers with Takagi-Sugeno-Kang Proportional-Derivative (PD) fuzzy terms. Iterative Learning Control (ILC) system structures with PD learning functions are involved in the current iteration SISO ILC structures. Optimization problems are defined in order to tune the parameters of the learning functions. The objective functions are defined as the sums of squared control errors, and they are solved in the iteration domain using the recent metaheuristic Slime Mould Algorithm (SMA). The experimental results prove the performance improvement of the SISO control systems after ten iterations of SMA
    corecore