693 research outputs found

    Experimental Results of Concurrent Learning Adaptive Controllers

    Get PDF
    Commonly used Proportional-Integral-Derivative based UAV flight controllers are often seen to provide adequate trajectory-tracking performance only after extensive tuning. The gains of these controllers are tuned to particular platforms, which makes transferring controllers from one UAV to other time-intensive. This paper suggests the use of adaptive controllers in speeding up the process of extracting good control performance from new UAVs. In particular, it is shown that a concurrent learning adaptive controller improves the trajectory tracking performance of a quadrotor with baseline linear controller directly imported from another quadrotors whose inertial characteristics and throttle mapping are very di fferent. Concurrent learning adaptive control uses specifi cally selected and online recorded data concurrently with instantaneous data and is capable of guaranteeing tracking error and weight error convergence without requiring persistency of excitation. Flight-test results are presented on indoor quadrotor platforms operated in MIT's RAVEN environment. These results indicate the feasibility of rapidly developing high-performance UAV controllers by using adaptive control to augment a controller transferred from another UAV with similar control assignment structure.United States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant N000141110688)National Science Foundation (U.S.). Graduate Research Fellowship Program (Grant 0645960)Boeing Scientific Research Laboratorie

    A Review of Kernel Methods for Feature Extraction in Nonlinear Process Monitoring

    Get PDF
    Kernel methods are a class of learning machines for the fast recognition of nonlinear patterns in any data set. In this paper, the applications of kernel methods for feature extraction in industrial process monitoring are systematically reviewed. First, we describe the reasons for using kernel methods and contextualize them among other machine learning tools. Second, by reviewing a total of 230 papers, this work has identified 12 major issues surrounding the use of kernel methods for nonlinear feature extraction. Each issue was discussed as to why they are important and how they were addressed through the years by many researchers. We also present a breakdown of the commonly used kernel functions, parameter selection routes, and case studies. Lastly, this review provides an outlook into the future of kernel-based process monitoring, which can hopefully instigate more advanced yet practical solutions in the process industries

    Automated On-line Diagnosis and Control Configuration in Robotic Systems Using Model Based Analytical Redundancy

    Get PDF
    Because of the increasingly demanding tasks that robotic systems are asked to perform, there is a need to make them more reliable, intelligent, versatile and self-sufficient. Furthermore, throughout the robotic system?s operation, changes in its internal and external environments arise, which can distort trajectory tracking, slow down its performance, decrease its capabilities, and even bring it to a total halt. Changes in robotic systems are inevitable. They have diverse characteristics, magnitudes and origins, from the all-familiar viscous friction to Coulomb/Sticktion friction, and from structural vibrations to air/underwater environmental change. This thesis presents an on-line environmental Change, Detection, Isolation and Accommodation (CDIA) scheme that provides a robotic system the capabilities to achieve demanding requirements and manage the ever-emerging changes. The CDIA scheme is structured around a priori known dynamic models of the robotic system and the changes (faults). In this approach, the system monitors its internal and external environments, detects any changes, identifies and learns them, and makes necessary corrections into its behavior in order to minimize or counteract their effects. A comprehensive study is presented that deals with every stage, aspect, and variation of the CDIA process. One of the novelties of the proposed approach is that the profile of the change may be either time or state-dependent. The contribution of the CDIA scheme is twofold as it provides robustness with respect to unmodeled dynamics and with respect to torque-dependent, state-dependent, structural and external environment changes. The effectiveness of the proposed approach is verified by the development of the CDIA scheme for a SCARA robot. Results of this extensive numerical study are included to verify the applicability of the proposed scheme

    Adapt-to-learn policy transfer in reinforcement learning and deep model reference adaptive control

    Get PDF
    Adaptation and Learning from exploration have been a key in biological learning; Humans and animals do not learn every task in isolation; rather are able to quickly adapt the learned behaviors between similar tasks and learn new skills when presented with new situations. Inspired by this, adaptation has been an important direction of research in control as Adaptive Controllers. However, the Adaptive Controllers like Model Reference Adaptive Controller are mainly model-based controllers and do not rely on exploration instead make informed decisions exploiting the model's structure. Therefore such controllers are characterized by high sample efficiency and stability conditions and, therefore, suitable for safety-critical systems. On the other hand, we have Learning-based optimal control algorithms like Reinforcement Learning. Reinforcement learning is a trial and error method, where an agent explores the environment by taking random action and maximizing the likelihood of those particular actions that result in a higher return. However, these exploration techniques are expected to fail many times before exploring optimal policy. Therefore, they are highly sample-expensive and lack stability guarantees and hence not suitable for safety-critical systems. This thesis presents control algorithms for robotics where the best of both worlds that is ``Adaptation'' and ``Learning from exploration'' are brought together to propose new algorithms that can perform better than their conventional counterparts. In this effort, we first present an Adapt to learn policy transfer Algorithm, where we use control theoretical ideas of adaptation to transfer policy between two related but different tasks using the policy gradient method of reinforcement learning. Efficient and robust policy transfer remains a key challenge in reinforcement learning. Policy transfer through warm initialization, imitation, or interacting over a large set of agents with randomized instances, have been commonly applied to solve a variety of Reinforcement Learning (RL) tasks. However, this is far from how behavior transfer happens in the biological world: Here, we seek to answer the question: Will learning to combine adaptation reward with environmental reward lead to a more efficient transfer of policies between domains? We introduce a principled mechanism that can ``Adapt-to-Learn", which is adapt the source policy to learn to solve a target task with significant transition differences and uncertainties. Through theory and experiments, we show that our method leads to a significantly reduced sample complexity of transferring the policies between the tasks. In the second part of this thesis, information-enabled learning-based adaptive controllers like ``Gaussian Process adaptive controller using Model Reference Generative Network'' (GP-MRGeN), ``Deep Model Reference Adaptive Controller'' (DMRAC) are presented. Model reference adaptive control (MRAC) is a widely studied adaptive control methodology that aims to ensure that a nonlinear plant with significant model uncertainty behaves like a chosen reference model. MRAC methods try to adapt the system to changes by representing the system uncertainties as weighted combinations of known nonlinear functions and using weight update law that ensures that network weights are moved in the direction of minimizing the instantaneous tracking error. However, most MRAC adaptive controllers use a shallow network and only the instantaneous data for adaptation, restricting their representation capability and limiting their performance under fast-changing uncertainties and faults in the system. In this thesis, we propose a Gaussian process based adaptive controller called GP-MRGeN. We present a new approach to the online supervised training of GP models using a new architecture termed as Model Reference Generative Network (MRGeN). Our architecture is very loosely inspired by the recent success of generative neural network models. Nevertheless, our contributions ensure that the inclusion of such a model in closed-loop control does not affect the stability properties. The GP-MRGeN controller, through using a generative network, is capable of achieving higher adaptation rates without losing robustness properties of the controller, hence suitable for mitigating faults in fast-evolving systems. Further, in this thesis, we present a new neuroadaptive architecture: Deep Neural Network-based Model Reference Adaptive Control. This architecture utilizes deep neural network representations for modeling significant nonlinearities while marrying it with the boundedness guarantees that characterize MRAC based controllers. We demonstrate through simulations and analysis that DMRAC can subsume previously studied learning-based MRAC methods, such as concurrent learning and GP-MRAC. This makes DMRAC a highly powerful architecture for high-performance control of nonlinear systems with long-term learning properties. Theoretical proofs of the controller generalizing capability over unseen data points and boundedness properties of the tracking error are also presented. Experiments with the quadrotor vehicle demonstrate the controller performance in achieving reference model tracking in the presence of significant matched uncertainties. A software+communication architecture is designed to ensure online real-time inference of the deep network on a high-bandwidth computation-limited platform to achieve these results. These results demonstrate the efficacy of deep networks for high bandwidth closed-loop attitude control of unstable and nonlinear robots operating in adverse situations. We expect that this work will benefit other closed-loop deep-learning control architectures for robotics

    Autonomously Reconfigurable Artificial Neural Network on a Chip

    Get PDF
    Artificial neural network (ANN), an established bio-inspired computing paradigm, has proved very effective in a variety of real-world problems and particularly useful for various emerging biomedical applications using specialized ANN hardware. Unfortunately, these ANN-based systems are increasingly vulnerable to both transient and permanent faults due to unrelenting advances in CMOS technology scaling, which sometimes can be catastrophic. The considerable resource and energy consumption and the lack of dynamic adaptability make conventional fault-tolerant techniques unsuitable for future portable medical solutions. Inspired by the self-healing and self-recovery mechanisms of human nervous system, this research seeks to address reliability issues of ANN-based hardware by proposing an Autonomously Reconfigurable Artificial Neural Network (ARANN) architectural framework. Leveraging the homogeneous structural characteristics of neural networks, ARANN is capable of adapting its structures and operations, both algorithmically and microarchitecturally, to react to unexpected neuron failures. Specifically, we propose three key techniques --- Distributed ANN, Decoupled Virtual-to-Physical Neuron Mapping, and Dual-Layer Synchronization --- to achieve cost-effective structural adaptation and ensure accurate system recovery. Moreover, an ARANN-enabled self-optimizing workflow is presented to adaptively explore a "Pareto-optimal" neural network structure for a given application, on the fly. Implemented and demonstrated on a Virtex-5 FPGA, ARANN can cover and adapt 93% chip area (neurons) with less than 1% chip overhead and O(n) reconfiguration latency. A detailed performance analysis has been completed based on various recovery scenarios
    • …
    corecore