41 research outputs found

    Ό-DSU:A Micro-Language Based Approach to Dynamic Software Updating

    Get PDF
    Today software systems play a critical role in society’s infrastructures and many are required to provide uninterrupted services in their constantly changing environments. As the problem domain and the operational context of such software changes, the software itself must be updated accordingly. In this paper we propose to support dynamic software updating through language semantic adaptation; this is done through use of micro-languages that confine the effect of the introduced change to specific application features. Micro-languages provide a logical layer over a programming language and associate an application feature with the portion of the programming language used to implement it. Thus, they permit to update the application feature by updating the underlying programming constructs without affecting the behaviour of the other application features. Such a linguistic approach provides the benefit of easy addition/removal of application features (with a special focus on non-functional features) to/from a running application by separating the implementation of the new feature from the original application, allowing for the application to remain unaware of any extensions. The feasibility of this approach is demonstrated with two studies; its benefits and drawbacks are also analysed

    Project-Team RMoD (Analyses and Language Constructs for Object-Oriented Application Evolution) 2011 Activity Report

    Get PDF
    This is the yearly report of the RMOD team (http://rmod.lille.inria.fr/). A good way to understand what we are doing

    Bridging the Gap between Machine and Language using First-Class Building Blocks

    Get PDF
    High-performance virtual machines (VMs) are increasingly reused for programming languages for which they were not initially designed. Unfortunately, VMs are usually tailored to specific languages, offer only a very limited interface to running applications, and are closed to extensions. As a consequence, extensions required to support new languages often entail the construction of custom VMs, thus impacting reuse, compatibility and performance. Short of building a custom VM, the language designer has to choose between the expressiveness and the performance of the language. In this dissertation we argue that the best way to open the VM is to eliminate it. We present Pinocchio, a natively compiled Smalltalk, in which we identify and reify three basic building blocks for object-oriented languages. First we define a protocol for message passing similar to calling conventions, independent of the actual message lookup mechanism. The lookup is provided by a self-supporting runtime library written in Smalltalk and compiled to native code. Since it unifies the meta- and base-level we obtain a metaobject protocol (MOP). Then we decouple the language-level manipulation of state from the machine-level implementation by extending the structural reflective model of the language with object layouts, layout scopes and slots. Finally we reify behavior using AST nodes and first-class interpreters separate from the low-level language implementation. We describe the implementations of all three first-class building blocks. For each of the blocks we provide a series of examples illustrating how they enable typical extensions to the runtime, and we provide benchmarks validating the practicality of the approaches

    Project-Team RMoD (Analyses and Language Constructs for Object-Oriented Application Evolution) 2009 Activity Report

    Get PDF
    This is the yearly report of the RMOD team. A good way to understand what we are doing

    Bridging the Gap between Machine and Language using First-Class Building Blocks

    Get PDF
    High-performance virtual machines (VMs) are increasingly reused for programming languages for which they were not initially designed. Unfortunately, VMs are usually tailored to specific languages, offer only a very limited interface to running applications, and are closed to extensions. As a consequence, extensions required to support new languages often entail the construction of custom VMs, thus impacting reuse, compatibility and performance. Short of building a custom VM, the language designer has to choose between the expressiveness and the performance of the language. In this dissertation we argue that the best way to open the VM is to eliminate it. We present Pinocchio, a natively compiled Smalltalk, in which we identify and reify three basic building blocks for object-oriented languages. First we define a protocol for message passing similar to calling conventions, independent of the actual message lookup mechanism. The lookup is provided by a self-supporting runtime library written in Smalltalk and compiled to native code. Since it unifies the meta- and base-level we obtain a metaobject protocol (MOP). Then we decouple the language-level manipulation of state from the machine-level implementation by extending the structural reflective model of the language with object layouts, layout scopes and slots. Finally we reify behavior using AST nodes and first-class interpreters separate from the low-level language implementation. We describe the implementations of all three first-class building blocks. For each of the blocks we provide a series of examples illustrating how they enable typical extensions to the runtime, and we provide benchmarks validating the practicality of the approaches

    Model-Based Run-time Verification of Software Components by Integrating OCL into Treaty

    Get PDF
    Model Driven Development is used to improve software quality and efficiency by automatically transforming abstract and formal models into software implementations. This is particularly sensible if the model’s integrity can be proven formally and is preserved during the model’s transformation. A standard to specify software model integrity is the Object Constraint Language (OCL). Another topic of research is the dynamic development of software components, enabling software system composition at component run-time. As a consequence, the system’s verification must be realized during system run-time (and not during transformation or compile time). Many established verification techniques cannot be used for run-time verification. A method to enable model-based run-time verification will be developed during this work. How OCL constraints can be transformed into executable software artifacts and how they can be used in the component-based system Treaty will be the major task of this diploma thesis.Modellgetriebene Entwicklung dient der Verbesserung von QualitĂ€t und Effizienz in der Software-Entwicklung durch Automatisierung der notwendigen Transformationen von abstrakten bzw. formalen Modellen bis zur Implementierung. Dies ist insbesondere dann sinnvoll, wenn die IntegritĂ€t der ursprĂŒnglichen Modelle formal bewiesen werden kann und durch die Transformation gewĂ€hrleistet wird. Ein Standard zur Spezifikation der IntegritĂ€t von Softwaremodellen ist die Object Constraint Language (OCL). Eine weitere Forschungsrichtung im Software-Engineering ist die Entwicklung von dynamischen Komponenten-Modellen, die die Komposition von Softwaresystemen im laufenden Betrieb ermöglichen. Dies bedeutet, dass die Systemverifikation im laufenden Betrieb realisiert werden muss. Die meisten der etablierten Verifikationstechniken sind dazu nicht geeignet. In der Diplomarbeit soll ausgehend von diesem Stand der Technik eine Methode zur modellbasierten Verifikation zur Laufzeit entwickelt werden. Insbesondere soll untersucht werden, wie OCL-Constraints zur Laufzeit in ausfĂŒhrbare Software-Artefakte ĂŒbersetzt und in dem komponentenbasierten System Treaty verwendet werden können

    Modularisation de la sécurité informatique dans les systÚmes distribués

    Get PDF
    Addressing security in the software development lifecycle still is an open issue today, especially in distributed software. Addressing security concerns requires a specific know-how, which means that security experts must collaborate with application programmers to develop secure software. Object-oriented and component-based development is commonly used to support collaborative development and to improve scalability and maintenance in software engineering. Unfortunately, those programming styles do not lend well to support collaborative development activities in this context, as security is a cross-cutting problem that breaks object or component modules. We investigated in this thesis several modularization techniques that address these issues. We first introduce the use of aspect-oriented programming in order to support secure programming in a more automated fashion and to minimize the number of vulnerabilities in applications introduced at the development phase. Our approach especially focuses on the injection of security checks to protect from vulnerabilities like input manipulation. We then discuss how to automate the enforcement of security policies programmatically and modularly. We first focus on access control policies in web services, whose enforcement is achieved through the instrumentation of the orchestration mechanism. We then address the enforcement of privacy protection policies through the expert-assisted weaving of privacy filters into software. We finally propose a new type of aspect-oriented pointcut capturing the information flow in distributed software to unify the implementation of our different security modularization techniques.IntĂ©grer les problĂ©matiques de sĂ©curitĂ© au cycle de dĂ©veloppement logiciel reprĂ©sente encore un dĂ©fi Ă  l’heure actuelle, notamment dans les logiciels distribuĂ©s. La sĂ©curitĂ© informatique requiert des connaissances et un savoir-faire particulier, ce qui implique une collaboration Ă©troite entre les experts en sĂ©curitĂ© et les autres acteurs impliquĂ©s. La programmation Ă  objets ou Ă  base de composants est communĂ©ment employĂ©e pour permettre de telles collaborations et amĂ©liorer la mise Ă  l’échelle et la maintenance de briques logicielles. Malheureusement, ces styles de programmation s’appliquent mal Ă  la sĂ©curitĂ©, qui est un problĂšme transverse brisant la modularitĂ© des objets ou des composants. Nous prĂ©sentons dans cette thĂšse plusieurs techniques de modularisation pour rĂ©soudre ce problĂšme. Nous proposons tout d’abord l’utilisation de la programmation par aspect pour appliquer de maniĂšre automatique et systĂ©matique des techniques de programmation sĂ©curisĂ©e et ainsi rĂ©duire le nombre de vulnĂ©rabilitĂ©s d’une application. Notre approche se focalise sur l’introduction de vĂ©rifications de sĂ©curitĂ© dans le code pour se protĂ©ger d’attaques comme les manipulations de donnĂ©es en entrĂ©e. Nous nous intĂ©ressons ensuite Ă  l’automatisation de la mise en application de politiques de sĂ©curitĂ© par des techniques de programmation. Nous avons par exemple automatisĂ© l’application de rĂšgles de contrĂŽle d’accĂšs fines et distribuĂ©es dans des web services par l’instrumentation des mĂ©canismes d’orchestration de la plate-forme. Nous avons aussi proposĂ© des mĂ©canismes permettant l’introduction d’un filtrage des donnĂ©es Ă  caractĂšre privĂ©e par le tissage d’aspects assistĂ© par un expert en sĂ©curitĂ©

    Model-Driven Development of Aspect-Oriented Software Architectures

    Full text link
    The work presented in this thesis of master is an approach that takes advantage of the Model-Driven Development approach for developing aspect-oriented software architectures. A complete MDD support for the PRISMA approach is defined by providing code generation, verification and reusability properties.PĂ©rez BenedĂ­, J. (2007). Model-Driven Development of Aspect-Oriented Software Architectures. http://hdl.handle.net/10251/12451Archivo delegad

    Run-time Variability with Roles

    Get PDF
    Adaptability is an intrinsic property of software systems that require adaptation to cope with dynamically changing environments. Achieving adaptability is challenging. Variability is a key solution as it enables a software system to change its behavior which corresponds to a specific need. The abstraction of variability is to manage variants, which are dynamic parts to be composed to the base system. Run-time variability realizes these variant compositions dynamically at run time to enable adaptation. Adaptation, relying on variants specified at build time, is called anticipated adaptation, which allows the system behavior to change with respect to a set of predefined execution environments. This implies the inability to solve practical problems in which the execution environment is not completely fixed and often unknown until run time. Enabling unanticipated adaptation, which allows variants to be dynamically added at run time, alleviates this inability, but it holds several implications yielding system instability such as inconsistency and run-time failures. Adaptation should be performed only when a system reaches a consistent state to avoid inconsistency. Inconsistency is an effect of adaptation happening when the system changes the state and behavior while a series of methods is still invoking. A software bug is another source of system instability. It often appears in a variant composition and is brought to the system during adaptation. The problem is even more critical for unanticipated adaptation as the system has no prior knowledge of the new variants. This dissertation aims to achieve anticipated and unanticipated adaptation. In achieving adaptation, the issues of inconsistency and software failures, which may happen as a consequence of run-time adaptation, are evidently addressed as well. Roles encapsulate dynamic behavior used to adapt players representing the base system, which is the rationale to select roles as the software system's variants. Based on the role concept, this dissertation presents three mechanisms to comprehensively address adaptation. First, a dynamic instance binding mechanism is proposed to loosely bind players and roles. Dynamic binding of roles enables anticipated and unanticipated adaptation. Second, an object-level tranquility mechanism is proposed to avoid inconsistency by allowing a player object to adapt only when its consistent state is reached. Last, a rollback recovery mechanism is proposed as a proactive mechanism to embrace and handle failures resulting from a defective composition of variants. A checkpoint of a system configuration is created before adaptation. If a specialized bug sensor detects a failure, the system rolls back to the most recent checkpoint. These mechanisms are integrated into a role-based runtime, called LyRT. LyRT was validated with three case studies to demonstrate the practical feasibility. This validation showed that LyRT is more advanced than the existing variability approaches with respect to adaptation due to its consistency control and failure handling. Besides, several benchmarks were set up to quantify the overhead of LyRT concerning the execution time of adaptation. The results revealed that the overhead introduced to achieve anticipated and unanticipated adaptation to be small enough for practical use in adaptive software systems. Thus, LyRT is suitable for adaptive software systems that frequently require the adaptation of large sets of objects
    corecore