1,284 research outputs found

    Visual Summary of Egocentric Photostreams by Representative Keyframes

    Get PDF
    Building a visual summary from an egocentric photostream captured by a lifelogging wearable camera is of high interest for different applications (e.g. memory reinforcement). In this paper, we propose a new summarization method based on keyframes selection that uses visual features extracted by means of a convolutional neural network. Our method applies an unsupervised clustering for dividing the photostreams into events, and finally extracts the most relevant keyframe for each event. We assess the results by applying a blind-taste test on a group of 20 people who assessed the quality of the summaries.Comment: Paper accepted in the IEEE First International Workshop on Wearable and Ego-vision Systems for Augmented Experience (WEsAX). Turin, Italy. July 3, 201

    Unsupervised Segmentation of Action Segments in Egocentric Videos using Gaze

    Full text link
    Unsupervised segmentation of action segments in egocentric videos is a desirable feature in tasks such as activity recognition and content-based video retrieval. Reducing the search space into a finite set of action segments facilitates a faster and less noisy matching. However, there exist a substantial gap in machine understanding of natural temporal cuts during a continuous human activity. This work reports on a novel gaze-based approach for segmenting action segments in videos captured using an egocentric camera. Gaze is used to locate the region-of-interest inside a frame. By tracking two simple motion-based parameters inside successive regions-of-interest, we discover a finite set of temporal cuts. We present several results using combinations (of the two parameters) on a dataset, i.e., BRISGAZE-ACTIONS. The dataset contains egocentric videos depicting several daily-living activities. The quality of the temporal cuts is further improved by implementing two entropy measures.Comment: To appear in 2017 IEEE International Conference On Signal and Image Processing Application

    The Evolution of First Person Vision Methods: A Survey

    Full text link
    The emergence of new wearable technologies such as action cameras and smart-glasses has increased the interest of computer vision scientists in the First Person perspective. Nowadays, this field is attracting attention and investments of companies aiming to develop commercial devices with First Person Vision recording capabilities. Due to this interest, an increasing demand of methods to process these videos, possibly in real-time, is expected. Current approaches present a particular combinations of different image features and quantitative methods to accomplish specific objectives like object detection, activity recognition, user machine interaction and so on. This paper summarizes the evolution of the state of the art in First Person Vision video analysis between 1997 and 2014, highlighting, among others, most commonly used features, methods, challenges and opportunities within the field.Comment: First Person Vision, Egocentric Vision, Wearable Devices, Smart Glasses, Computer Vision, Video Analytics, Human-machine Interactio

    Egocentric Hand Detection Via Dynamic Region Growing

    Full text link
    Egocentric videos, which mainly record the activities carried out by the users of the wearable cameras, have drawn much research attentions in recent years. Due to its lengthy content, a large number of ego-related applications have been developed to abstract the captured videos. As the users are accustomed to interacting with the target objects using their own hands while their hands usually appear within their visual fields during the interaction, an egocentric hand detection step is involved in tasks like gesture recognition, action recognition and social interaction understanding. In this work, we propose a dynamic region growing approach for hand region detection in egocentric videos, by jointly considering hand-related motion and egocentric cues. We first determine seed regions that most likely belong to the hand, by analyzing the motion patterns across successive frames. The hand regions can then be located by extending from the seed regions, according to the scores computed for the adjacent superpixels. These scores are derived from four egocentric cues: contrast, location, position consistency and appearance continuity. We discuss how to apply the proposed method in real-life scenarios, where multiple hands irregularly appear and disappear from the videos. Experimental results on public datasets show that the proposed method achieves superior performance compared with the state-of-the-art methods, especially in complicated scenarios
    corecore