190 research outputs found

    Disturbance Feedback Control for Industrial Systems:Practical Design with Robustness

    Get PDF

    Advances in state estimation, diagnosis and control of complex systems

    Get PDF
    This dissertation intends to provide theoretical and practical contributions on estimation, diagnosis and control of complex systems, especially in the mathematical form of descriptor systems. The research is motivated by real applications, such as water networks and power systems, which require a control system to provide a proper management able to take into account their specific features and operating limits in presence of uncertainties related to their operation and failures from component malfunctions. Such a control system is expected to provide an optimal operation to obtain efficient and reliable performance. State estimation is an essential tool, which can be used not only for fault diagnosis but also for the controller design. To achieve a satisfactory robust performance, set theory is chosen to build a general framework for descriptor systems subject to uncertainties. Under certain assumptions, these uncertainties are propagated and bounded by deterministic sets that can be explicitly characterized at each iteration step. Moreover, set-invariance characterizations for descriptor systems are also of interest to describe the steady performance, which can also be used for active mode detection. For the controller design for complex systems, new developments of economic model predictive control (EMPC) are studied taking into account the case of underlying periodic behaviors. The EMPC controller is designed to be recursively feasible even with sudden changes in the economic cost function and the closed-loop convergence is guaranteed. Besides, a robust technique is plugged into the EMPC controller design to maintain these closed-loop properties in presence of uncertainties. Engineering applications modeled as descriptor systems are presented to illustrate these control strategies. From the real applications, some additional difficulties are solved, such as using a two-layer control strategy to avoid binary variables in real-time optimizations and using nonlinear constraint relaxation to deal with nonlinear algebraic equations in the descriptor model. Furthermore, the fault-tolerant capability is also included in the controller design for descriptor systems by means of the designed virtual actuator and virtual sensor together with an observer-based delayed controller.Esta tesis propone contribuciones de carácter teórico y aplicado para la estimación del estado, el diagnóstico y el control óptimo de sistemas dinámicos complejos en particular, para los sistemas descriptores, incluyendo la capacidad de tolerancia a fallos. La motivación de la tesis proviene de aplicaciones reales, como redes de agua y sistemas de energía, cuya naturaleza crítica requiere necesariamente un sistema de control para una gestión capaz de tener en cuenta sus características específicas y límites operativos en presencia de incertidumbres relacionadas con su funcionamiento, así como fallos de funcionamiento de los componentes. El objetivo es conseguir controladores que mejoren tanto la eficiencia como la fiabilidad de dichos sistemas. La estimación del estado es una herramienta esencial que puede usarse no solo para el diagnóstico de fallos sino también para el diseño del control. Con este fin, se ha decidido utilizar metodologías intervalares, o basadas en conjuntos, para construir un marco general para los sistemas de descriptores sujetos a incertidumbres desconocidas pero acotadas. Estas incertidumbres se propagan y delimitan mediante conjuntos que se pueden caracterizar explícitamente en cada instante. Por otra parte, también se proponen caracterizaciones basadas en conjuntos invariantes para sistemas de descriptores que permiten describir comportamientos estacionarios y resultan útiles para la detección de modos activos. Se estudian también nuevos desarrollos del control predictivo económico basado en modelos (EMPC) para tener en cuenta posibles comportamientos periódicos en la variación de parámetros o en las perturbaciones que afectan a estos sistemas. Además, se demuestra que el control EMPC propuesto garantiza la factibilidad recursiva, incluso frente a cambios repentinos en la función de coste económico y se garantiza la convergencia en lazo cerrado. Por otra parte, se utilizan técnicas de control robusto pata garantizar que las estrategias de control predictivo económico mantengan las prestaciones en lazo cerrado, incluso en presencia de incertidumbre. Los desarrollos de la tesis se ilustran con casos de estudio realistas. Para algunas de aplicaciones reales, se resuelven dificultades adicionales, como el uso de una estrategia de control de dos niveles para evitar incluir variables binarias en la optimización y el uso de la relajación de restricciones no lineales para tratar las ecuaciones algebraicas no lineales en el modelo descriptor en las redes de agua. Finalmente, se incluye también una contribución al diseño de estrategias de control con tolerancia a fallos para sistemas descriptores

    A CENTER MANIFOLD THEORY-BASED APPROACH TO THE STABILITY ANALYSIS OF STATE FEEDBACK TAKAGI-SUGENO-KANG FUZZY CONTROL SYSTEMS

    Get PDF
    The aim of this paper is to propose a stability analysis approach based on the application of the center manifold theory and applied to state feedback Takagi-Sugeno-Kang fuzzy control systems. The approach is built upon a similar approach developed for Mamdani fuzzy controllers. It starts with a linearized mathematical model of the process that is accepted to belong to the family of single input second-order nonlinear systems which are linear with respect to the control signal. In addition, smooth right-hand terms of the state-space equations that model the processes are assumed. The paper includes the validation of the approach by application to stable state feedback Takagi-Sugeno-Kang fuzzy control system for the position control of an electro-hydraulic servo-system

    Time-varying stability analysis of linear systems with linear matrix inequalities

    Get PDF
    Aerospace attitude control systems are often modeled as time-varying linear systems. In industry, these systems are analyzed with linear time-invariant (LTI) methods by treating the system as slowly varying. Stability analysis with parameter dependent Lyapunov functions and linear matrix inequalities (LMIs) enables the consideration of bounds on system parameters' rates of variation while accounting for time-varying behavior. The LMI criteria are adapted to predict robustness in time-varying systems. In a case study, stability envelopes are created for time-varying uncertain parameters in a spacecraft. The time-of-flight is divided into intervals and analyzed using typical trajectories of time-varying parameters. For the uncertain parameter combinations considered, LMI stability criteria deduce that the system is stable and possesses stability margins that meet or exceed requirements for the time intervals that can be approximated by linear system models

    Cascaded Control for Improved Building HVAC Performance

    Get PDF
    As of 2011 buildings consumed 41% of all primary energy in the U.S. and can represent more than 70% of peak demand on the electrical grid. Usage by this sector has grown almost 50% since the 1980s and projections foresee an additional growth of 17% by 2035 due to increases in population, new home construction, and commercial development. Three-quarters of building energy is derived from fossil fuels making it a large contributor of the country’s CO2 and NOx output both of which greatly affect the environment and local air quality. Up to half of energy used by the building sector is related to Heating, Ventilation, and Air-Condition systems. Focusing on improving building HVAC control therefore has a large aggregate effect on US energy usage with economic and environmental benefits for end users. This dissertation develops cascaded loop architectures as a solution to common HVAC control issues. These systems display strong load-dependent nonlinearities and coupling behaviors that can lead to actuator hunting (sustained input oscillations) from standard PI controllers that waste energy and cost money. Cascaded loops offer a simple way to eliminate hunting and decouple complex HVAC systems with minimal a priori knowledge of system dynamics. As cascaded loops are easily implementable in building automation systems they can be readily and widely adopted in the field. An examination of the current state of PI control in HVAC and discussion of coordinated, optimal control strategies being developed for reduced energy usage are discussed in Chapter 1. The following two chapters outline the structure and benefits of the cascaded architecture and demonstrate the same using a series of simulation case studies. Implementation approaches and parameterizations of the architecture are explored in Chapter 4 with a derivation showing that the addition of an additional feedback path (i.e., inner loop control) provides more design freedom and ultimately allows for improved control. Finally, Chapter 5 details results from initial cascaded loop implementation at three campus buildings. Results showed improved control performance and an elimination of identified hunting behavior

    Proceedings of the 1st Virtual Control Conference VCC 2010

    Get PDF

    Integration and optimal control of microcsp with building hvac systems: Review and future directions

    Get PDF
    Heating, ventilation, and air-conditioning (HVAC) systems are omnipresent in modern buildings and are responsible for a considerable share of consumed energy and the electricity bill in buildings. On the other hand, solar energy is abundant and could be used to support the building HVAC system through cogeneration of electricity and heat. Micro-scale concentrated solar power (MicroCSP) is a propitious solution for such applications that can be integrated into the building HVAC system to optimally provide both electricity and heat, on-demand via application of optimal control techniques. The use of thermal energy storage (TES) in MicroCSP adds dispatching capabilities to the MicroCSP energy production that will assist in optimal energy management in buildings. This work presents a review of the existing contributions on the combination of MicroCSP and HVAC systems in buildings and how it compares to other thermal-assisted HVAC applications. Different topologies and architectures for the integration of MicroCSP and building HVAC systems are proposed, and the components of standard MicroCSP systems with their control-oriented models are explained. Furthermore, this paper details the different control strategies to optimally manage the energy flow, both electrical and thermal, from the solar field to the building HVAC system to minimize energy consumption and/or operational cost

    Prohibited Volume Avoidance for Aircraft

    No full text
    This thesis describes the development of a pilot override control system that prevents aircraft entering critical regions of space, known as prohibited volumes. The aim is to prevent another 9/11 style terrorist attack, as well as act as a general safety system for transport aircraft. The thesis presents the design and implementation of three core modules in the system; the trajectory generation algorithm, the trigger mechanism for the pilot override and the trajectory following element. The trajectory generation algorithm uses a direct multiple shooting strategy to provide trajectories through online computation that avoid pre-defi ned prohibited volume exclusion regions, whilst accounting for the manoeuvring capabilities of the aircraft. The trigger mechanism incorporates the logic that decides the time at which it is suitable for the override to be activated, an important consideration for ensuring that the system is not overly restrictive for a pilot. A number of methods are introduced, and for safety purposes a composite trigger that incorporates di fferent strategies is recommended. Trajectory following is best achieved via a nonlinear guidance law. The guidance logic sends commands in pitch, roll and yaw to the control surfaces of the aircraft, in order to closely follow the generated avoidance trajectory. Testing and validation is performed using a full motion simulator, with volunteers flying a representative aircraft model and attempting to penetrate prohibited volumes. The proof-of-concept system is shown to work well, provided that extreme aircraft manoeuvres are prevented near the exclusion regions. These hard manoeuvring envelope constraints allow the trajectory following controllers to follow avoidance trajectories accurately from an initial state within the bounding set. In order to move the project closer to a commercial product, operator and regulator input is necessary, particularly due to the radical nature of the pilot override system

    Centralized and distributed command governor approaches for water supply systems management

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper evaluates the applicability of Command Governor (CG) strategies to the optimal management of Drinking Water Supply Systems (DWSS) in both centralized and distributed ways. It will be shown that CG approaches provide an adequate framework for addressing the management of these large-scale interconnected systems in the presence of periodically time-varying disturbances (water demands) that can be anticipated by using time-series forecasting approaches. The proposed centralized and distributed CG schemes are presented, discussed and compared when applied to the management of DWSS considering the same set of operational goals in all cases. The paper illustrates the effectiveness of all strategies using the Barcelona DWSS as a case study and highlighting the advantages of each approach.Peer ReviewedPostprint (author's final draft
    corecore