70 research outputs found

    New Approaches in Automation and Robotics

    Get PDF
    The book New Approaches in Automation and Robotics offers in 22 chapters a collection of recent developments in automation, robotics as well as control theory. It is dedicated to researchers in science and industry, students, and practicing engineers, who wish to update and enhance their knowledge on modern methods and innovative applications. The authors and editor of this book wish to motivate people, especially under-graduate students, to get involved with the interesting field of robotics and mechatronics. We hope that the ideas and concepts presented in this book are useful for your own work and could contribute to problem solving in similar applications as well. It is clear, however, that the wide area of automation and robotics can only be highlighted at several spots but not completely covered by a single book

    Marine dual fuel engines modelling and optimisation employing : a novel combustion characterisation method

    Get PDF
    Dual fuel (DF) engines have been an attractive alternative of traditional diesel engines for reducing both the environmental impact and operating cost. The major challenge of DF engine design is to deal with the performance-emissions trade-off via operating settings optimisation. Nevertheless, determining the optimal solution requires large amount of case studies, which could be both time-consuming and costly in cases where methods like engine test or Computational Fluid Dynamics (CFD) simulation are directly used to perform the optimisation. This study aims at developing a novel combustion characterisation method for marine DF engines based on the combined use of three-dimensional (3D) simulation and zero-dimensional/one-dimensional (0D/1D) simulation methods. The 3D model is developed with the CONVERGE software and validated by employing the measured pressure and emissions. Subsequently, the validated 3D model is used to perform a parametric study to explore the engine operating settings that allow simultaneous reduction of the brake specific fuel consumption (BSFC) and NOx emissions at three engine operation conditions (1457 r/min, 1629 r/min and 1800 r/min). Furthermore, the derived heat release rate (HRR) is employed to calibrate the 0D Wiebe combustion model by using Response Surface Methodology (RSM). A linear response model for the Wiebe combustion function parameters is proposed by considering each Wiebe parameter as a function of the pilot injection timing, equivalence ratio and natural gas mass. The 0D/1D model is established in the GT-ISE software and used to optimise the performance-emissions trade-off of the reference engine by employing the Nondominated Sorting Genetic Algorithm II (NSGA II). The obtained results provide a comprehensive insight on the impacts of the involved engine operating settings on in-cylinder combustion characteristics, engine performance and emissions of the investigated marine DF engine. By performing the settings optimisation at three engine operating points, settings that lead to reduced BSFC are identified, whilst the NOx emissions comply with the Tier III NOx emissions regulation. The proposed novel method is expected to support the combustion analysis and enhancement of marine DF engines during the design phase, whilst the derived optimal solution is expected to provide guidelines of DF engine management for reducing operating cost and environmental footprint.Dual fuel (DF) engines have been an attractive alternative of traditional diesel engines for reducing both the environmental impact and operating cost. The major challenge of DF engine design is to deal with the performance-emissions trade-off via operating settings optimisation. Nevertheless, determining the optimal solution requires large amount of case studies, which could be both time-consuming and costly in cases where methods like engine test or Computational Fluid Dynamics (CFD) simulation are directly used to perform the optimisation. This study aims at developing a novel combustion characterisation method for marine DF engines based on the combined use of three-dimensional (3D) simulation and zero-dimensional/one-dimensional (0D/1D) simulation methods. The 3D model is developed with the CONVERGE software and validated by employing the measured pressure and emissions. Subsequently, the validated 3D model is used to perform a parametric study to explore the engine operating settings that allow simultaneous reduction of the brake specific fuel consumption (BSFC) and NOx emissions at three engine operation conditions (1457 r/min, 1629 r/min and 1800 r/min). Furthermore, the derived heat release rate (HRR) is employed to calibrate the 0D Wiebe combustion model by using Response Surface Methodology (RSM). A linear response model for the Wiebe combustion function parameters is proposed by considering each Wiebe parameter as a function of the pilot injection timing, equivalence ratio and natural gas mass. The 0D/1D model is established in the GT-ISE software and used to optimise the performance-emissions trade-off of the reference engine by employing the Nondominated Sorting Genetic Algorithm II (NSGA II). The obtained results provide a comprehensive insight on the impacts of the involved engine operating settings on in-cylinder combustion characteristics, engine performance and emissions of the investigated marine DF engine. By performing the settings optimisation at three engine operating points, settings that lead to reduced BSFC are identified, whilst the NOx emissions comply with the Tier III NOx emissions regulation. The proposed novel method is expected to support the combustion analysis and enhancement of marine DF engines during the design phase, whilst the derived optimal solution is expected to provide guidelines of DF engine management for reducing operating cost and environmental footprint

    Constitutive modeling of amorphous thermoplastic polymers with special emphasis on manufacturing processes

    Get PDF
    This book deals with the development of constitutive models for the mechanical behavior of amorphous thermoplastic polymers at large strains. A special emphasis lies on the temperature dependency so that the altered material behavior at high temperatures can be considered. To implement the developed constitutive models the software tool AceGen is used by which program code is generated and optimized as well as derivatives are calculated automatically

    NASA SBIR abstracts of 1992, phase 1 projects

    Get PDF
    The objectives of 346 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1992 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 346, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1992 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    14th International Conference on Turbochargers and Turbocharging

    Get PDF
    14th International Conference on Turbochargers and Turbocharging addresses current and novel turbocharging system choices and components with a renewed emphasis to address the challenges posed by emission regulations and market trends. The contributions focus on the development of air management solutions and waste heat recovery ideas to support thermal propulsion systems leading to high thermal efficiency and low exhaust emissions. These can be in the form of internal combustion engines or other propulsion technologies (eg. Fuel cell) in both direct drive and hybridised configuration. 14th International Conference on Turbochargers and Turbocharging also provides a particular focus on turbochargers, superchargers, waste heat recovery turbines and related air managements components in both electrical and mechanical forms

    Pertanika Journal of Science & Technology

    Get PDF

    Pertanika Journal of Science & Technology

    Get PDF

    Academic catalog 2016-2018

    Get PDF
    Midlands Technical College publishes an annual academic catalog with information for students about procedures, academic programs, and course descriptions

    2013-2014 Bulletin

    Get PDF
    After 2003 the University of Dayton Bulletin went exclusively online. This copy was downloaded from the University of Dayton\u27s website.https://ecommons.udayton.edu/bulletin/1012/thumbnail.jp
    corecore