10,727 research outputs found

    Complexity of Left-Ideal, Suffix-Closed and Suffix-Free Regular Languages

    Get PDF
    A language LL over an alphabet Σ\Sigma is suffix-convex if, for any words x,y,zΣx,y,z\in\Sigma^*, whenever zz and xyzxyz are in LL, then so is yzyz. Suffix-convex languages include three special cases: left-ideal, suffix-closed, and suffix-free languages. We examine complexity properties of these three special classes of suffix-convex regular languages. In particular, we study the quotient/state complexity of boolean operations, product (concatenation), star, and reversal on these languages, as well as the size of their syntactic semigroups, and the quotient complexity of their atoms.Comment: 20 pages, 11 figures, 1 table. arXiv admin note: text overlap with arXiv:1605.0669

    Quotient Complexity Of Closed Languages

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00224-013-9515-7A language L is prefix-closed if, whenever a word w is in L, then every prefix of w is also in L. We define suffix-, factor-, and subword-closed languages in an analogous way, where by factor we mean contiguous subsequence, and by subword we mean scattered subsequence. We study the state complexity (which we prefer to call quotient complexity) of operations on prefix-, suffix-, factor-, and subword-closed languages. We find tight upper bounds on the complexity of the subword-closure of arbitrary languages, and on the complexity of boolean operations, concatenation, star, and reversal in each of the four classes of closed languages. We show that repeated applications of positive closure and complement to a closed language result in at most four distinct languages, while Kleene closure and complement give at most eight.Natural Sciences and Engineering Research Council of Canada [OGP0000871]VEGA grant [2/0183/11][APVV-0035-10

    Complexity of right-ideal, prefix-closed, and prefix-free regular languages

    Get PDF
    A language L over an alphabet Σ is prefix-convex if, for any words x, y, z ϵ Σ* , whenever x and xyz are in L, then so is xy. Prefix-convex languages include right-ideal, prefix-closed, and prefix-free languages as special cases. We examine complexity properties of these special prefix-convex languages. In particular, we study the quotient/state complexity of boolean operations, product (concatenation), star, and reversal, the size of the syntactic semigroup, and the quotient complexity of atoms. For binary operations we use arguments with different alphabets when appropriate; this leads to higher tight upper bounds than those obtained with equal alphabets. We exhibit right-ideal, prefix-closed, and prefix-free languages that meet the complexity bounds for all the measures listed above

    Quotient Complexity Of Star-Free Languages

    Get PDF
    Electronic version of an article published as International Journal of Foundations of Computer Science, 23(06), 2012, 1261–1276. http://dx.doi.org/10.1142/S0129054112400515 © World Scientific Publishing Company http://www.worldscientific.com/The quotient complexity, also known as state complexity, of a regular language is the number of distinct left quotients of the language. The quotient complexity of an operation is the maximal quotient complexity of the language resulting from the operation, as a function of the quotient complexities of the operands. The class of star free languages is the smallest class containing the finite languages and closed under boolean operations and concatenation. We prove that the tight bounds on the quotient complexities of union, intersection, difference, symmetric difference, concatenation and star for star-free languages are the same as those for regular languages, with some small exceptions, whereas 2(n) - 1 is a lower bound for reversal.Natural Sciences and Engineering Research Council of Canada [OGP0000871

    Complexity of Right-Ideal, Prefix-Closed, and Prefix-Free Regular Languages

    Get PDF
    A language L over an alphabet E is prefix-convex if, for any words x, y, z is an element of Sigma*, whenever x and xyz are in L, then so is xy. Prefix-convex languages include right-ideal, prefix-closed, and prefix-free languages as special cases. We examine complexity properties of these special prefix-convex languages. In particular, we study the quotient/state complexity of boolean operations, product (concatenation), star, and reversal, the size of the syntactic semi group, and the quotient complexity of atoms. For binary operations we use arguments with different alphabets when appropriate; this leads to higher tight upper bounds than those obtained with equal alphabets. We exhibit right-ideal, prefix-closed, and prefix-free languages that meet the complexity bounds for all the measures listed above.Natural Sciences and Engineering Research Council of Canada [OGP0000871

    Operations on Automata with All States Final

    Full text link
    We study the complexity of basic regular operations on languages represented by incomplete deterministic or nondeterministic automata, in which all states are final. Such languages are known to be prefix-closed. We get tight bounds on both incomplete and nondeterministic state complexity of complement, intersection, union, concatenation, star, and reversal on prefix-closed languages.Comment: In Proceedings AFL 2014, arXiv:1405.527
    corecore