33 research outputs found

    Optimal Bayesian Quickest Detection for Hidden Markov Models and Structured Generalisations

    Full text link
    In this paper we consider the problem of quickly detecting changes in hidden Markov models (HMMs) in a Bayesian setting, as well as several structured generalisations including changes in statistically periodic processes, quickest detection of a Markov process across a sensor array, quickest detection of a moving target in a sensor network and quickest change detection (QCD) in multistream data. Our main result establishes an optimal Bayesian HMM QCD rule with a threshold structure. This framework and proof techniques allow us to to elegantly establish optimal rules for several structured generalisations by showing that these problems are special cases of the Bayesian HMM QCD problem. We develop bounds to characterise the performance of our optimal rule and provide an efficient method for computing the test statistic. Finally, we examine the performance of our rule in several simulation examples and propose a technique for calculating the optimal threshold

    Incremental on-line learning: A review and comparison of state of the art algorithms

    Get PDF
    Losing V, Hammer B, Wersing H. Incremental on-line learning: A review and comparison of state of the art algorithms. Neurocomputing. 2018;275:1261-1274

    Design of virtual reality systems for animal behavior research

    Get PDF
    Virtual reality (VR) experimental behavior setups enable cognitive neuroscientists to study the integration of visual depth cues and self-motion cues into a single percept of three-dimensional space. Rodents can navigate a virtual environment by running on a spherical treadmill, but simulating locomotion in this way can both bias and suppress the frequency of their behaviors as well as introduce vestibulomotor and vestibulovisual sensory conflict during locomotion. Updating the virtual environment via the subject's own freely-moving head movements solves both the naturalistic behavior bias and vestibular conflict issues. In this thesis, I review elements of self-motion and 3D scene perception that contribute to a sense of immersion in virtual environments and suggest a freely-moving CAVE system as a VR solution for low-artifact neuroscience experiments. The manuscripts describing the 3D graphics Python package and the virtual reality setup are included. In this freely-moving CAVE VR setup, freely-moving rats demonstrate immersion in virtual environments by displaying height aversion to virtual cliffs, exploration preference of virtual objects, and spontaneously modify their locomotion trajectories near virtual walls. These experiments help bridge the classic behavior and virtual reality literature by showing that rats display similar behaviors to virtual environment features without training

    Bringing the Nonlinearity of the Movement System to Gestural Theories of Language Use: Multifractal Structure of Spoken English Supports the Compensation for Coarticulation in Human Speech Perception

    Get PDF
    Coarticulation is the tendency for speech vocalization and articulation even at the phonemic level to change with context, and compensation for coarticulation (CfC) reflects the striking human ability to perceive phonemic stability despite this variability. A current controversy centers on whether CfC depends on contrast between formants of a speech-signal spectrogram—specifically, contrast between offset formants concluding context stimuli and onset formants opening the target sound—or on speech-sound variability specific to the coordinative movement of speech articulators (e.g., vocal folds, postural muscles, lips, tongues). This manuscript aims to encode that coordinative-movement context in terms of speech-signal multifractal structure and to determine whether speech's multifractal structure might explain the crucial gestural support for any proposed spectral contrast. We asked human participants to categorize individual target stimuli drawn from an 11-step [ga]-to-[da] continuum as either phonemes “GA” or “DA.” Three groups each heard a specific-type context stimulus preceding target stimuli: either real-speech [al] or [a], sine-wave tones at the third-formant offset frequency of either [al] or [aɹ], and either simulated-speech contexts [al] or [aɹ]. Here, simulating speech contexts involved randomizing the sequence of relatively homogeneous pitch periods within vowel-sound [a] of each [al] and [aɹ]. Crucially, simulated-speech contexts had the same offset and extremely similar vowel formants as and, to additional naïve participants, sounded identical to real-speech contexts. However, randomization distorted original speech-context multifractality, and effects of spectral contrast following speech only appeared after regression modeling of trial-by-trial “GA” judgments controlled for context-stimulus multifractality. Furthermore, simulated-speech contexts elicited faster responses (like tone contexts do) and weakened known biases in CfC, suggesting that spectral contrast depends on the nonlinear interactions across multiple scales that articulatory gestures express through the speech signal. Traditional mouse-tracking behaviors measured as participants moved their computer-mouse cursor to register their “GA”-or-“DA” decisions with mouse-clicks suggest that listening to speech leads the movement system to resonate with the multifractality of context stimuli. We interpret these results as shedding light on a new multifractal terrain upon which to found a better understanding in which movement systems play an important role in shaping how speech perception makes use of acoustic information

    Architectures for online simulation-based inference applied to robot motion planning

    Get PDF
    Robotic systems have enjoyed significant adoption in industrial and field applications in structured environments, where clear specifications of the task and observations are available. Deploying robots in unstructured and dynamic environments remains a challenge, being addressed through emerging advances in machine learning. The key open issues in this area include the difficulty of achieving coverage of all factors of variation in the domain of interest, satisfying safety constraints, etc. One tool that has played a crucial role in addressing these issues is simulation - which is used to generate data, and sometimes as a world representation within the decision-making loop. When physical simulation modules are used in this way, a number of computational problems arise. Firstly, a suitable simulation representation and fidelity is required for the specific task of interest. Secondly, we need to perform parameter inference of physical variables being used in the simulation models. Thirdly, there is the need for data assimilation, which must be achieved in real-time if the resulting model is to be used within the online decision-making loop. These are the motivating problems for this thesis. In the first section of the thesis, we tackle the inference problem with respect to a fluid simulation model, where a sensorised UAV performs path planning with the objective of acquiring data including gas concentration/identity and IMU-based wind estimation readings. The task for the UAV is to localise the source of a gas leak, while accommodating the subsequent dispersion of the gas in windy conditions. We present a formulation of this problem that allows us to perform online and real-time active inference efficiently through problem-specific simplifications. In the second section of the thesis, we explore the problem of robot motion planning when the true state is not fully observable, and actions influence how much of the state is subsequently observed. This is motivated by the practical problem of a robot performing suction in the surgical automation setting. The objective is the efficient removal of liquid while respecting a safety constraint - to not touch the underlying tissue if possible. If the problem were represented in full generality, as one of planning under uncertainty and hidden state, it could be hard to find computationally efficient solutions. Once again, we make problem-specific simplifications. Crucially, instead of reasoning in general about fluid flows and arbitrary surfaces, we exploit the observations that the decision can be informed by the contour tree skeleton of the volume, and the configurations in which the fluid would come to rest if unperturbed. This allows us to address the problem as one of iterative shortest path computation, whose costs are informed by a model estimating the shape of the underlying surface. In the third and final section of the thesis, we propose a model for real-time parameter estimation directly from raw pixel observations. Through the use of a Variational Recurrent Neural Network model, where the latent space is further structured by penalising for fit to data from a physical simulation, we devise an efficient online inference scheme. This is first shown in the context of a representative dynamic manipulation task for a robot. This task involves reasoning about a bouncing ball that it must catch – using as input the raw video from an environment-mounted camera and accommodating noise and variations in the object and environmental conditions. We then show that the same architecture lends itself to solving inference problems involving more complex dynamics, by applying this to measurement inversion of ultrafast X-Ray scattering data to infer molecular geometry
    corecore