303 research outputs found

    Harnessing function from form: towards bio-inspired artificial intelligence in neuronal substrates

    Get PDF
    Despite the recent success of deep learning, the mammalian brain is still unrivaled when it comes to interpreting complex, high-dimensional data streams like visual, auditory and somatosensory stimuli. However, the underlying computational principles allowing the brain to deal with unreliable, high-dimensional and often incomplete data while having a power consumption on the order of a few watt are still mostly unknown. In this work, we investigate how specific functionalities emerge from simple structures observed in the mammalian cortex, and how these might be utilized in non-von Neumann devices like “neuromorphic hardware”. Firstly, we show that an ensemble of deterministic, spiking neural networks can be shaped by a simple, local learning rule to perform sampling-based Bayesian inference. This suggests a coding scheme where spikes (or “action potentials”) represent samples of a posterior distribution, constrained by sensory input, without the need for any source of stochasticity. Secondly, we introduce a top-down framework where neuronal and synaptic dynamics are derived using a least action principle and gradient-based minimization. Combined, neurosynaptic dynamics approximate real-time error backpropagation, mappable to mechanistic components of cortical networks, whose dynamics can again be described within the proposed framework. The presented models narrow the gap between well-defined, functional algorithms and their biophysical implementation, improving our understanding of the computational principles the brain might employ. Furthermore, such models are naturally translated to hardware mimicking the vastly parallel neural structure of the brain, promising a strongly accelerated and energy-efficient implementation of powerful learning and inference algorithms, which we demonstrate for the physical model system “BrainScaleS–1”

    Experimentally realized in situ backpropagation for deep learning in nanophotonic neural networks

    Full text link
    Neural networks are widely deployed models across many scientific disciplines and commercial endeavors ranging from edge computing and sensing to large-scale signal processing in data centers. The most efficient and well-entrenched method to train such networks is backpropagation, or reverse-mode automatic differentiation. To counter an exponentially increasing energy budget in the artificial intelligence sector, there has been recent interest in analog implementations of neural networks, specifically nanophotonic neural networks for which no analog backpropagation demonstration exists. We design mass-manufacturable silicon photonic neural networks that alternately cascade our custom designed "photonic mesh" accelerator with digitally implemented nonlinearities. These reconfigurable photonic meshes program computationally intensive arbitrary matrix multiplication by setting physical voltages that tune the interference of optically encoded input data propagating through integrated Mach-Zehnder interferometer networks. Here, using our packaged photonic chip, we demonstrate in situ backpropagation for the first time to solve classification tasks and evaluate a new protocol to keep the entire gradient measurement and update of physical device voltages in the analog domain, improving on past theoretical proposals. Our method is made possible by introducing three changes to typical photonic meshes: (1) measurements at optical "grating tap" monitors, (2) bidirectional optical signal propagation automated by fiber switch, and (3) universal generation and readout of optical amplitude and phase. After training, our classification achieves accuracies similar to digital equivalents even in presence of systematic error. Our findings suggest a new training paradigm for photonics-accelerated artificial intelligence based entirely on a physical analog of the popular backpropagation technique.Comment: 23 pages, 10 figure

    Intelligent shop scheduling for semiconductor manufacturing

    Get PDF
    Semiconductor market sales have expanded massively to more than 200 billion dollars annually accompanied by increased pressure on the manufacturers to provide higher quality products at lower cost to remain competitive. Scheduling of semiconductor manufacturing is one of the keys to increasing productivity, however the complexity of manufacturing high capacity semiconductor devices and the cost considerations mean that it is impossible to experiment within the facility. There is an immense need for effective decision support models, characterizing and analyzing the manufacturing process, allowing the effect of changes in the production environment to be predicted in order to increase utilization and enhance system performance. Although many simulation models have been developed within semiconductor manufacturing very little research on the simulation of the photolithography process has been reported even though semiconductor manufacturers have recognized that the scheduling of photolithography is one of the most important and challenging tasks due to complex nature of the process. Traditional scheduling techniques and existing approaches show some benefits for solving small and medium sized, straightforward scheduling problems. However, they have had limited success in solving complex scheduling problems with stochastic elements in an economic timeframe. This thesis presents a new methodology combining advanced solution approaches such as simulation, artificial intelligence, system modeling and Taguchi methods, to schedule a photolithography toolset. A new structured approach was developed to effectively support building the simulation models. A single tool and complete toolset model were developed using this approach and shown to have less than 4% deviation from actual production values. The use of an intelligent scheduling agent for the toolset model shows an average of 15% improvement in simulated throughput time and is currently in use for scheduling the photolithography toolset in a manufacturing plant

    A Spectral Condition for Feature Learning

    Full text link
    The push to train ever larger neural networks has motivated the study of initialization and training at large network width. A key challenge is to scale training so that a network's internal representations evolve nontrivially at all widths, a process known as feature learning. Here, we show that feature learning is achieved by scaling the spectral norm of weight matrices and their updates like fan-out/fan-in\sqrt{\texttt{fan-out}/\texttt{fan-in}}, in contrast to widely used but heuristic scalings based on Frobenius norm and entry size. Our spectral scaling analysis also leads to an elementary derivation of \emph{maximal update parametrization}. All in all, we aim to provide the reader with a solid conceptual understanding of feature learning in neural networks

    A Scalable Workflow for a Configurable Neuromorphic Platform

    Get PDF
    This thesis establishes a scalable multi-user workflow for the operation of a highly configurable, large-scale neuromorphic hardware platform. The resulting software framework provides unified low-level as well as parallel high-level access. The latter is realized by an efficient abstract neural network description library, an automated translation of networks into hardware specific configurations and an experiment server infrastructure responsible for scheduling and executing experiments. Scalability, manual guidance and a broad support for handling hardware imper- fections render the model translation process suitable for large networks as well as large-scale neuromorphic systems. Networks with local connectivity, random networks and cortical column models are explored to study the topological aptitude of the neuromorphic platform and to benchmark the workflow. Depending on the model, performance improvements of more than two orders of magnitude have been achieved over a previous implementation. Additionally, an automated defect assessment for hardware synapses is introduced, indicating that most synapses are available for model emulation. In a second study, a tempotron-based hardware liquid state machine has been developed and applied to different tasks, including a memory challenge and digit recognition. The trained tempotron inherently compensates for fixed pattern variations making the setup suitable for analog neuromorphic hardware. The achieved performance is comparable to reference software simulations

    New Approaches in Automation and Robotics

    Get PDF
    The book New Approaches in Automation and Robotics offers in 22 chapters a collection of recent developments in automation, robotics as well as control theory. It is dedicated to researchers in science and industry, students, and practicing engineers, who wish to update and enhance their knowledge on modern methods and innovative applications. The authors and editor of this book wish to motivate people, especially under-graduate students, to get involved with the interesting field of robotics and mechatronics. We hope that the ideas and concepts presented in this book are useful for your own work and could contribute to problem solving in similar applications as well. It is clear, however, that the wide area of automation and robotics can only be highlighted at several spots but not completely covered by a single book

    Methods for the acquisition and analysis of volume electron microscopy data

    Get PDF

    NASA Space Engineering Research Center Symposium on VLSI Design

    Get PDF
    The NASA Space Engineering Research Center (SERC) is proud to offer, at its second symposium on VLSI design, presentations by an outstanding set of individuals from national laboratories and the electronics industry. These featured speakers share insights into next generation advances that will serve as a basis for future VLSI design. Questions of reliability in the space environment along with new directions in CAD and design are addressed by the featured speakers
    • 

    corecore