864 research outputs found

    On-board B-ISDN fast packet switching architectures. Phase 2: Development. Proof-of-concept architecture definition report

    Get PDF
    For the next-generation packet switched communications satellite system with onboard processing and spot-beam operation, a reliable onboard fast packet switch is essential to route packets from different uplink beams to different downlink beams. The rapid emergence of point-to-point services such as video distribution, and the large demand for video conference, distributed data processing, and network management makes the multicast function essential to a fast packet switch (FPS). The satellite's inherent broadcast features gives the satellite network an advantage over the terrestrial network in providing multicast services. This report evaluates alternate multicast FPS architectures for onboard baseband switching applications and selects a candidate for subsequent breadboard development. Architecture evaluation and selection will be based on the study performed in phase 1, 'Onboard B-ISDN Fast Packet Switching Architectures', and other switch architectures which have become commercially available as large scale integration (LSI) devices

    A packet switch with a priority scheduling discipline: Performance analysis

    Get PDF

    Quality of Service over Specific Link Layers: state of the art report

    Get PDF
    The Integrated Services concept is proposed as an enhancement to the current Internet architecture, to provide a better Quality of Service (QoS) than that provided by the traditional Best-Effort service. The features of the Integrated Services are explained in this report. To support Integrated Services, certain requirements are posed on the underlying link layer. These requirements are studied by the Integrated Services over Specific Link Layers (ISSLL) IETF working group. The status of this ongoing research is reported in this document. To be more specific, the solutions to provide Integrated Services over ATM, IEEE 802 LAN technologies and low-bitrate links are evaluated in detail. The ISSLL working group has not yet studied the requirements, that are posed on the underlying link layer, when this link layer is wireless. Therefore, this state of the art report is extended with an identification of the requirements that are posed on the underlying wireless link, to provide differentiated Quality of Service

    A methodological approach to BISDN signalling performance

    Get PDF
    Sophisticated signalling protocols are required to properly handle the complex multimedia, multiparty services supported by the forthcoming BISDN. The implementation feasibility of these protocols should be evaluated during their design phase, so that possible performance bottlenecks are identified and removed. In this paper we present a methodology for evaluating the performance of BISDN signalling systems under design. New performance parameters are introduced and their network-dependent values are extracted through a message flow model which has the capability to describe the impact of call and bearer control separation on the signalling performance. Signalling protocols are modelled through a modular decomposition of the seven OSI layers including the service user to three submodels. The workload model is user descriptive in the sense that it does not approximate the direct input traffic required for evaluating the performance of a layer protocol; instead, through a multi-level approach, it describes the actual implications of user signalling activity for the general signalling traffic. The signalling protocol model is derived from the global functional model of the signalling protocols and information flows using a network of queues incorporating synchronization and dependency functions. The same queueing approach is followed for the signalling transfer network which is used to define processing speed and signalling bandwidth requirements and to identify possible performance bottlenecks stemming from the realization of the related protocols

    Partially shared buffers with full or mixed priority

    Get PDF
    This paper studies a finite-sized discrete-time two-class priority queue. Packets of both classes arrive according to a two-class discrete batch Markovian arrival process (2-DBMAP), taking into account the correlated nature of arrivals in heterogeneous telecommunication networks. The model incorporates time and space priority to provide different types of service to each class. One of both classes receives absolute time priority in order to minimize its delay. Space priority is implemented by the partial buffer sharing acceptance policy and can be provided to the class receiving time priority or to the other class. This choice gives rise to two different queueing models and this paper analyses both these models in a unified manner. Furthermore, the buffer finiteness and the use of space priority raise some issues on the order of arrivals in a slot. This paper does not assume that all arrivals from one class enter the queue before those of the other class. Instead, a string representation for sequences of arriving packets and a probability measure on the set of such strings are introduced. This naturally gives rise to the notion of intra-slot space priority. Performance of these queueing systems is then determined using matrix-analytic techniques. The numerical examples explore the range of service differentiation covered by both models
    • 

    corecore