840 research outputs found

    Optimal Pricing Effect on Equilibrium Behaviors of Delay-Sensitive Users in Cognitive Radio Networks

    Full text link
    This paper studies price-based spectrum access control in cognitive radio networks, which characterizes network operators' service provisions to delay-sensitive secondary users (SUs) via pricing strategies. Based on the two paradigms of shared-use and exclusive-use dynamic spectrum access (DSA), we examine three network scenarios corresponding to three types of secondary markets. In the first monopoly market with one operator using opportunistic shared-use DSA, we study the operator's pricing effect on the equilibrium behaviors of self-optimizing SUs in a queueing system. %This queue represents the congestion of the multiple SUs sharing the operator's single \ON-\OFF channel that models the primary users (PUs) traffic. We provide a queueing delay analysis with the general distributions of the SU service time and PU traffic using the renewal theory. In terms of SUs, we show that there exists a unique Nash equilibrium in a non-cooperative game where SUs are players employing individual optimal strategies. We also provide a sufficient condition and iterative algorithms for equilibrium convergence. In terms of operators, two pricing mechanisms are proposed with different goals: revenue maximization and social welfare maximization. In the second monopoly market, an operator exploiting exclusive-use DSA has many channels that will be allocated separately to each entering SU. We also analyze the pricing effect on the equilibrium behaviors of the SUs and the revenue-optimal and socially-optimal pricing strategies of the operator in this market. In the third duopoly market, we study a price competition between two operators employing shared-use and exclusive-use DSA, respectively, as a two-stage Stackelberg game. Using a backward induction method, we show that there exists a unique equilibrium for this game and investigate the equilibrium convergence.Comment: 30 pages, one column, double spac

    Dynamic Scheduling for Delay Guarantees for Heterogeneous Cognitive Radio Users

    Full text link
    We study an uplink multi secondary user (SU) system having statistical delay constraints, and an average interference constraint to the primary user (PU). SUs with heterogeneous interference channel statistics, to the PU, experience heterogeneous delay performances since SUs causing low interference are scheduled more frequently than those causing high interference. We propose a scheduling algorithm that can provide arbitrary average delay guarantees to SUs irrespective of their statistical channel qualities. We derive the algorithm using the Lyapunov technique and show that it yields bounded queues and satisfy the interference constraints. Using simulations, we show its superiority over the Max-Weight algorithm.Comment: Asilomar 2015. arXiv admin note: text overlap with arXiv:1602.0801
    • …
    corecore