575 research outputs found

    1 Asynchronous vs Synchronous Input-Queued Switches

    Get PDF
    Abstract—Input-queued (IQ) switches are one of the reference architectures for the design of high-speed packet switches. Classical results in this field refer to the scenario in which the whole switch transfers the packets in a synchronous fashion, in phase with a sequence of fixedsize timeslots, tailored to transport a minimum-size packet. However, for switches with large number of ports and high bandwidth, maintaining an accurate global synchronization and transferring all the packets in a synchronous fashion is becoming more and more challenging. Furthermore, variable size packets (as in the traffic present in the Internet) require rather complex segmentation and reassembly processes and some switching capacity is wasted due to partial filling of timeslots. Thus, in this work we consider a switch able to natively transfer packets in an asynchronous fashion thanks to a simple and distributed packet scheduler. We investigate the performance of asynchronous IQ switches and show that, despite their simplicity, their performance is comparable or even better than those of synchronous switches. These results highlight the great potential of the asynchronous approach for the design of high-performance switches.

    Performance analysis of a proposed hybrid optical network

    Get PDF
    This dissertation discusses a novel Hybrid Optical Network (HON) that can provide service differentiation based on traffic characteristics (i.e., packet, burst, and long-lived flow) with QoS guarantee not only in network layer, but also in physical layer. The DHON consists of sophisticated edge-nodes, which can classify, monitor, and dynamically adjust optical channels in the core layer as traffic variation. The edge nodes aggregate traffic, identifying end-to-end delay by ingress queuing delay or burst timeout. The network can estimate number of channels by arriving traffic intensity and distribution with estimated upper-bound delay. The core layer employs two parallel optical switches (OCS, OBS) in the same platform. Thanks to the overflow system, the proposed network enhances utilization with fewer long distance premium channels. The premium channel can quickly handle burst traffic without new channel assignment. With less overprovisioning capacity design, the premium channel enhances utilization and decrease number of costly premium channels. This research also proposes mathematic models to represent particular DHON channels (i.e., circuit, packet, and burst). We employ method of moments based on overflow theory to forecast irregular traffic pattern from circuit-based channel (i.e., M/M/c/c) to overflow channel, in which G/G/1 model based on Ph/Ph/1 matrix can represent the overflow channel. Moreover, secondary channel supports packet-based traffic over wavelength channel with two service classes: Class I based on delay sensitive traffic (i.e., long flow) and Class II for non-delay sensitive traffic (e.g., best effort). In addition, mixture of traffic in the wavelength channels is investigated based on M/G/1 and M/G/2 with specific service time distribution for particular class. Finally, we show our DHON based on (O-O-O) switching paradigm has improved the performance over typical (O-E-O) switching network architecture based on NSF topology

    Heart-like fair queuing algorithms (HLFQA)

    Get PDF
    We propose a new family of fair, work conserving traffic scheduling mechanisms that imitate the behavior of the human heart in the cardiovascular system. The algorithms have MAX (where MAX is the maximum packet size) fairness and O(log N) complexity and thus compare favorably with existing algorithms. The algorithms are simple enough to be implemented in hardwar

    Wavelength conversion in optical packet switching

    Get PDF
    A detailed traffic analysis of optical packet switch design is performed. Special consideration is given to the complexity of the optical buffering and the overall switch block structure is considered in general. Wavelength converters are shown to improve the traffic performance of the switch blocks for both random and bursty traffic. Furthermore, the traffic performance of switch blocks with add--drop sports has been assessed in a Shufflenetwork showing the advantage of having converters at the inlets. Finally, the aspect of synchronization is discussed through a proposal to operate the packet switch block asynchronously, i.e., without packet alignment at the input

    Evaluation of data centre networks and future directions

    Get PDF
    Traffic forecasts predict a more than threefold increase in the global datacentre workload in coming years, caused by the increasing adoption of cloud and data-intensive applications. Consequently, there has been an unprecedented need for ultra-high throughput and minimal latency. Currently deployed hierarchical architectures using electronic packet switching technologies are costly and energy-inefficient. Very high capacity switches are required to satisfy the enormous bandwidth requirements of cloud datacentres and this limits the overall network scalability. With the maturity of photonic components, turning to optical switching in data centres is a viable option to accommodate greater bandwidth and network flexibility while potentially minimising the latency, cost and power consumption. Various DCN architectures have been proposed to date and this thesis includes a comparative analysis of such electronic and optical topologies to judge their suitability based on network performance parameters and cost/energy effectiveness, while identifying the challenges faced by recent DCN infrastructures. An analytical Layer 2 switching model is introduced that can alleviate the simulation scalability problem and evaluate the performance of the underlying DCN architecture. This model is also used to judge the variation in traffic arrival/offloading at the intermediate queueing stages and the findings are used to derive closed form expressions for traffic arrival rates and delay. The results from the simulated network demonstrate the impact of buffering and versubscription and reveal the potential bottlenecks and network design tradeoffs. TCP traffic forms the bulk of current DCN workload and so the designed network is further modified to include TCP flows generated from a realistic traffic generator for assessing the impact of Layer 4 congestion control on the DCN performance with standard TCP and datacentre specific TCP protocols (DCTCP). Optical DCN architectures mostly concentrate on core-tier switching. However, substantial energy saving is possible by introducing optics in the edge tiers. Hence, a new approach to optical switching is introduced using Optical ToR switches which can offer better delay performance than commodity switches of similiar size, while having far less power dissipation. An all-optical topology has been further outlined for the efficient implementation of the optical switch meeting the future scalability demands

    On packet switch design

    Get PDF
    corecore