176 research outputs found

    Scheduling for next generation WLANs: filling the gap between offered and observed data rates

    Get PDF
    In wireless networks, opportunistic scheduling is used to increase system throughput by exploiting multi-user diversity. Although recent advances have increased physical layer data rates supported in wireless local area networks (WLANs), actual throughput realized are significantly lower due to overhead. Accordingly, the frame aggregation concept is used in next generation WLANs to improve efficiency. However, with frame aggregation, traditional opportunistic schemes are no longer optimal. In this paper, we propose schedulers that take queue and channel conditions into account jointly, to maximize throughput observed at the users for next generation WLANs. We also extend this work to design two schedulers that perform block scheduling for maximizing network throughput over multiple transmission sequences. For these schedulers, which make decisions over long time durations, we model the system using queueing theory and determine users' temporal access proportions according to this model. Through detailed simulations, we show that all our proposed algorithms offer significant throughput improvement, better fairness, and much lower delay compared with traditional opportunistic schedulers, facilitating the practical use of the evolving standard for next generation wireless networks

    Numerical analysis of multidimensional queueing systems

    Get PDF

    Cooperative Spectrum Sensing in Cognitive Radio Networks Using Multidimensional Correlations

    Get PDF
    In this paper, a multidimensional-correlation-based sensing scheduling algorithm, (CORN)2, is developed for cognitive radio networks to minimize energy consumption. A sensing quality metric is defined as a measure of the correctness of spectral availability information based on the fact that spectrum sensing information at a given space and time can represent spectrum information at a different point in space and time. The scheduling algorithm is shown to achieve a cost of sensing (e.g., energy consumption, sensing duration) arbitrarily close to the possible minimum, while meeting the sensing quality requirements. To this end, (CORN)2 utilizes a novel sensing deficiency virtual queue concept and exploits the correlation between spectrum measurements of a particular secondary user and its collaborating neighbors. The proposed algorithm is proved to achieve a distributed and arbitrarily close to optimal solution under certain, easily satisfied assumptions. Furthermore, a distributed Selective-(CORN)2 (S-(CORN)2) is introduced by extending the distributed algorithm to allow secondary users to select collaboration neighbors in densely populated cognitive radio networks. In addition to the theoretically proved performance guarantees, the algorithms are evaluated through simulations

    System Performance Analysis of Cooperative Communication in Wireless Ad Hoc Networks

    Get PDF
    Wireless ad hoc networks have been attracting more and more attentions in recent years from both academia and industry, because of their low deployment costs and broad applications. Due to the scarcity of the radio spectrum, supporting concurrent transmissions by exploiting the spatial frequency reuse gain is necessary to enhance spectrum utilization. On the other hand, cooperative communication is a practical technique for realizing the spatial diversity gain to mitigate the detrimental effect of wireless channel and enhance the transmission reliability. Enabling concurrent cooperative transmissions across a network can achieve both types of gains. Due to the broadcast nature of wireless communications, the concurrent cooperative transmissions using the same radio channel generate interference to each other, which is the main performance-limiting factor. Accurate characterization of interference is a fundamental step towards evaluating the performance of cooperative communication in a wireless ad hoc network. However, the distributed network operation, random node locations, interference redistribution due to relay transmissions, and dynamic traffic arrival pose significant challenges in interference characterization. Under the protocol interference model, this thesis evaluates the effectiveness of cooperative communication in a wireless ad hoc network from a perspective of overall network performance through investigating the network throughput, which captures the tradeoff between single-link cooperation gain and network-wide reduced spatial frequency reuse due to relay transmissions. In particular, based on stochastic geometry, the outage probabilities of direct and cooperative transmissions are derived to characterize single-link cooperation gain. On the other hand, according to a randomized scheduling scheme, the expected numbers of concurrent direct and cooperative transmissions that can be accommodated within the network coverage area are calculated to characterize network-wide reduced spatial frequency reuse. The analytical results show that a locally beneficial cooperation decision is not guaranteed to be network-wide beneficial. The number of potential relays determines the achievable performance of a cooperative link, and varies for different source-destination pairs due to random relay locations. This thesis proposes an opportunistic cooperation strategy based on the number of potential relays available for each source-destination pair. Under the physical interference model, the correlation of node locations induces the correlation of interference power. Via modeling node locations as a Poisson point process (PPP) and based on the Campbell's theorem, the temporal correlation coefficient of interference power at a destination node is analyzed. In addition, we derive the outage probability of opportunistic cooperation while taking into account the spatial and temporal interference correlation. The overall network performance can be enhanced by adjusting the proportion of concurrent cooperative transmissions. In addition to random node locations and interference redistribution, dynamic traffic arrival further complicates the interference characterization. This thesis investigates the performance of cooperative communication in a wireless ad hoc network with unsaturated traffic, which introduces a correlation between the interferer density and packet retransmission probability. Based on queueing theory and stochastic geometry, the interference power is characterized from two aspects, namely stationary interferer density and interference correlation in two consecutive time-slots, to evaluate the network performance. The analytical results show that the performance analysis under the assumption of independent interference power overestimates the network performance. The proposed theoretical performance analysis framework provides a step towards better understanding of the benefits and limitations of cooperative communication in wireless ad hoc networks with spatially random nodes, and in turn provides useful insights on protocol design and parameter setting for large-scale networks.4 month
    corecore