12,240 research outputs found

    Exclusive Queueing Process with Discrete Time

    Full text link
    In a recent study [C Arita, Phys. Rev. E 80, 051119 (2009)], an extension of the M/M/1 queueing process with the excluded-volume effect as in the totally asymmetric simple exclusion process (TASEP) was introduced. In this paper, we consider its discrete-time version. The update scheme we take is the parallel one. A stationary-state solution is obtained in a slightly arranged matrix product form of the discrete-time open TASEP with the parallel update. We find the phase diagram for the existence of the stationary state. The critical line which separates the parameter space into the regions with and without the stationary state can be written in terms of the stationary current of the open TASEP. We calculate the average length of the system and the average number of particles

    When Backpressure Meets Predictive Scheduling

    Full text link
    Motivated by the increasing popularity of learning and predicting human user behavior in communication and computing systems, in this paper, we investigate the fundamental benefit of predictive scheduling, i.e., predicting and pre-serving arrivals, in controlled queueing systems. Based on a lookahead window prediction model, we first establish a novel equivalence between the predictive queueing system with a \emph{fully-efficient} scheduling scheme and an equivalent queueing system without prediction. This connection allows us to analytically demonstrate that predictive scheduling necessarily improves system delay performance and can drive it to zero with increasing prediction power. We then propose the \textsf{Predictive Backpressure (PBP)} algorithm for achieving optimal utility performance in such predictive systems. \textsf{PBP} efficiently incorporates prediction into stochastic system control and avoids the great complication due to the exponential state space growth in the prediction window size. We show that \textsf{PBP} can achieve a utility performance that is within O(ϵ)O(\epsilon) of the optimal, for any ϵ>0\epsilon>0, while guaranteeing that the system delay distribution is a \emph{shifted-to-the-left} version of that under the original Backpressure algorithm. Hence, the average packet delay under \textsf{PBP} is strictly better than that under Backpressure, and vanishes with increasing prediction window size. This implies that the resulting utility-delay tradeoff with predictive scheduling beats the known optimal [O(ϵ),O(log(1/ϵ))][O(\epsilon), O(\log(1/\epsilon))] tradeoff for systems without prediction

    Density profiles of the exclusive queueing process

    Full text link
    The exclusive queueing process (EQP) incorporates the exclusion principle into classic queueing models. It can be interpreted as an exclusion process of variable system length. Here we extend previous studies of its phase diagram by identifying subphases which can be distinguished by the number of plateaus in the density profiles. Furthermore the influence of different update procedures (parallel, backward-ordered, continuous time) is determined

    A Fixed-Point Algorithm for Closed Queueing Networks

    Get PDF
    In this paper we propose a new efficient iterative scheme for solving closed queueing networks with phase-type service time distributions. The method is especially efficient and accurate in case of large numbers of nodes and large customer populations. We present the method, put it in perspective, and validate it through a large number of test scenarios. In most cases, the method provides accuracies within 5% relative error (in comparison to discrete-event simulation)

    Stochastic decomposition in discrete-time queues with generalized vacations and applications

    Get PDF
    For several specific queueing models with a vacation policy, the stationary system occupancy at the beginning of a rantdom slot is distributed as the sum of two independent random variables. One of these variables is the stationary number of customers in an equivalent queueing system with no vacations. For models in continuous time with Poissonian arrivals, this result is well-known, and referred to as stochastic decomposition, with proof provided by Fuhrmann and Cooper. For models in discrete time, this result received less attention, with no proof available to date. In this paper, we first establish a proof of the decomposition result in discrete time. When compared to the proof in continuous time, conditions for the proof in discrete time are somewhat more general. Second, we explore four different examples: non-preemptive proirity systems, slot-bound priority systems, polling systems, and fiber delay line (FDL) buffer systems. The first two examples are known results from literature that are given here as an illustration. The third is a new example, and the last one (FDL buffer systems) shows new results. It is shown that in some cases the queueing analysis can be considerably simplified using this property

    Tail behaviour of the area under a random process, with applications to queueing systems, insurance and percolations

    Get PDF
    The areas under workload process and under queuing process in a single server queue over the busy period have many applications not only in queuing theory but also in risk theory or percolation theory. We focus here on the tail behaviour of distribution of these two integrals. We present various open problems and conjectures, which are supported by partial results for some special cases
    corecore