1,346 research outputs found

    Discrete-time queues with variable service capacity: a basic model and its analysis

    Get PDF
    In this paper, we present a basic discrete-time queueing model whereby the service process is decomposed in two (variable) components: the demand of each customer, expressed in a number of work units needed to provide full service of the customer, and the capacity of the server, i.e., the number of work units that the service facility is able to perform per time unit. The model is closely related to multi-server queueing models with server interruptions, in the sense that the service facility is able to deliver more than one unit of work per time unit, and that the number of work units that can be executed per time unit is not constant over time. Although multi-server queueing models with server interruptions-to some extent-allow us to study the concept of variable capacity, these models have a major disadvantage. The models are notoriously hard to analyze and even when explicit expressions are obtained, these contain various unknown probabilities that have to be calculated numerically, which makes the expressions difficult to interpret. For the model in this paper, on the other hand, we are able to obtain explicit closed-form expressions for the main performance measures of interest. Possible applications of this type of queueing model are numerous: the variable service capacity could model variable available bandwidths in communication networks, a varying production capacity in factories, a variable number of workers in an HR-environment, varying capacity in road traffic, etc

    EUROPEAN CONFERENCE ON QUEUEING THEORY 2016

    Get PDF
    International audienceThis booklet contains the proceedings of the second European Conference in Queueing Theory (ECQT) that was held from the 18th to the 20th of July 2016 at the engineering school ENSEEIHT, Toulouse, France. ECQT is a biannual event where scientists and technicians in queueing theory and related areas get together to promote research, encourage interaction and exchange ideas. The spirit of the conference is to be a queueing event organized from within Europe, but open to participants from all over the world. The technical program of the 2016 edition consisted of 112 presentations organized in 29 sessions covering all trends in queueing theory, including the development of the theory, methodology advances, computational aspects and applications. Another exciting feature of ECQT2016 was the institution of the TakĂĄcs Award for outstanding PhD thesis on "Queueing Theory and its Applications"

    Towards a System Theoretic Approach to Wireless Network Capacity in Finite Time and Space

    Get PDF
    In asymptotic regimes, both in time and space (network size), the derivation of network capacity results is grossly simplified by brushing aside queueing behavior in non-Jackson networks. This simplifying double-limit model, however, lends itself to conservative numerical results in finite regimes. To properly account for queueing behavior beyond a simple calculus based on average rates, we advocate a system theoretic methodology for the capacity problem in finite time and space regimes. This methodology also accounts for spatial correlations arising in networks with CSMA/CA scheduling and it delivers rigorous closed-form capacity results in terms of probability distributions. Unlike numerous existing asymptotic results, subject to anecdotal practical concerns, our transient one can be used in practical settings: for example, to compute the time scales at which multi-hop routing is more advantageous than single-hop routing

    The pseudo-self-similar traffic model: application and validation

    Get PDF
    Since the early 1990Âżs, a variety of studies has shown that network traffic, both for local- and wide-area networks, has self-similar properties. This led to new approaches in network traffic modelling because most traditional traffic approaches result in the underestimation of performance measures of interest. Instead of developing completely new traffic models, a number of researchers have proposed to adapt traditional traffic modelling approaches to incorporate aspects of self-similarity. The motivation for doing so is the hope to be able to reuse techniques and tools that have been developed in the past and with which experience has been gained. One such approach for a traffic model that incorporates aspects of self-similarity is the so-called pseudo self-similar traffic model. This model is appealing, as it is easy to understand and easily embedded in Markovian performance evaluation studies. In applying this model in a number of cases, we have perceived various problems which we initially thought were particular to these specific cases. However, we recently have been able to show that these problems are fundamental to the pseudo self-similar traffic model. In this paper we review the pseudo self-similar traffic model and discuss its fundamental shortcomings. As far as we know, this is the first paper that discusses these shortcomings formally. We also report on ongoing work to overcome some of these problems

    Validity of heavy traffic steady-state approximations in generalized Jackson Networks

    Full text link
    We consider a single class open queueing network, also known as a generalized Jackson network (GJN). A classical result in heavy-traffic theory asserts that the sequence of normalized queue length processes of the GJN converge weakly to a reflected Brownian motion (RBM) in the orthant, as the traffic intensity approaches unity. However, barring simple instances, it is still not known whether the stationary distribution of RBM provides a valid approximation for the steady-state of the original network. In this paper we resolve this open problem by proving that the re-scaled stationary distribution of the GJN converges to the stationary distribution of the RBM, thus validating a so-called ``interchange-of-limits'' for this class of networks. Our method of proof involves a combination of Lyapunov function techniques, strong approximations and tail probability bounds that yield tightness of the sequence of stationary distributions of the GJN.Comment: Published at http://dx.doi.org/10.1214/105051605000000638 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • 

    corecore