463 research outputs found

    A Novel Workload Allocation Strategy for Batch Jobs

    Get PDF
    The distribution of computational tasks across a diverse set of geographically distributed heterogeneous resources is a critical issue in the realisation of true computational grids. Conventionally, workload allocation algorithms are divided into static and dynamic approaches. Whilst dynamic approaches frequently outperform static schemes, they usually require the collection and processing of detailed system information at frequent intervals - a task that can be both time consuming and unreliable in the real-world. This paper introduces a novel workload allocation algorithm for optimally distributing the workload produced by the arrival of batches of jobs. Results show that, for the arrival of batches of jobs, this workload allocation algorithm outperforms other commonly used algorithms in the static case. A hybrid scheduling approach (using this workload allocation algorithm), where information about the speed of computational resources is inferred from previously completed jobs, is then introduced and the efficiency of this approach demonstrated using a real world computational grid. These results are compared to the same workload allocation algorithm used in the static case and it can be seen that this hybrid approach comprehensively outperforms the static approach

    Stochastic scheduling and workload allocation : QoS support and profitable brokering in computing grids

    No full text
    Abstract: The Grid can be seen as a collection of services each of which performs some functionality. Users of the Grid seek to use combinations of these services to perform the overall task they need to achieve. In general this can be seen as aset of services with a workflow document describing how these services should be combined. The user may also have certain constraints on the workflow operations, such as execution time or cost ----t~ th~ user, specified in the form of a Quality of Service (QoS) document. The users . submit their workflow to a brokering service along with the QoS document. The brokering service's task is to map any given workflow to a subset of the Grid services taking the QoS and state of the Grid into account -- service availability and performance. We propose an approach for generating constraint equations describing the workflow, the QoS requirements and the state of the Grid. This set of equations may be solved using Mixed-Integer Linear Programming (MILP), which is the traditional method. We further develop a novel 2-stage stochastic MILP which is capable of dealing with the volatile nature of the Grid and adapting the selection of the services during the lifetime of the workflow. We present experimental results comparing our approaches, showing that the . 2-stage stochastic programming approach performs consistently better than other traditional approaches. Next we addresses workload allocation techniques for Grid workflows in a multi-cluster Grid We model individual clusters as MIMIk. queues and obtain a numerical solutio~ for missed deadlines (failures) of tasks of Grid workflows. We also present an efficient algorithm for obtaining workload allocations of clusters. Next we model individual cluster resources as G/G/l queues and solve an optimisation problem that minimises QoS requirement violation, provides QoS guarantee and outperforms reservation based scheduling algorithms. Both approaches are evaluated through an experimental simulation and the results confirm that the proposed workload allocation strategies combined with traditional scheduling algorithms performs considerably better in terms of satisfying QoS requirements of Grid workflows than scheduling algorithms that don't employ such workload allocation techniques. Next we develop a novel method for Grid brokers that aims at maximising profit whilst satisfying end-user needs with a sufficient guarantee in a volatile utility Grid. We develop a develop a 2-stage stochastic MILP which is capable of dealing with the volatile nature . of the Grid and obtaining cost bounds that ensure that end-user cost is minimised or satisfied and broker's profit is maximised with sufficient guarantee. These bounds help brokers know beforehand whether the budget limits of end-users can be satisfied and. if not then???????? obtain appropriate future leases from service providers. Experimental results confirm the efficacy of our approach.Imperial Users onl

    A novel approach to allocating QoS-constrained workflow-based jobs in a multi-cluster grid

    No full text
    Clusters are increasingly interconnected to form multi-cluster systems, which are becoming popular for scientific computation. Grid users often submit their applications in the form of workflows with certain Quality of Service (QoS) requirements imposed on the workflows. These workflows detail the composition of Grid services and the level of service required from the Grid. This paper addresses workload allocation techniques for Grid workflows. We model a resource within a cluster as a G/G/1 queue and minimise failures (QoS requirement violation) of jobs by solving a mixed-integer non-linear program (MINLP). The novel approach is evaluated through an experimental simulation and the results confirm that the proposed workload allocation strategy not only provides QoS guarantee but also performs considerably better in terms of satisfying QoS requirements of Grid workflows than reservation-based scheduling algorithms. © 2006 ACM

    A Novel Approach to Workload Allocation of QoS-Constrained Workflow-Based Jobs in a Utility Grid

    No full text

    Autonomous grid scheduling using probabilistic job runtime scheduling

    Get PDF
    Computational Grids are evolving into a global, service-oriented architecture – a universal platform for delivering future computational services to a range of applications of varying complexity and resource requirements. The thesis focuses on developing a new scheduling model for general-purpose, utility clusters based on the concept of user requested job completion deadlines. In such a system, a user would be able to request each job to finish by a certain deadline, and possibly to a certain monetary cost. Implementing deadline scheduling is dependent on the ability to predict the execution time of each queued job, and on an adaptive scheduling algorithm able to use those predictions to maximise deadline adherence. The thesis proposes novel solutions to these two problems and documents their implementation in a largely autonomous and self-managing way. The starting point of the work is an extensive analysis of a representative Grid workload revealing consistent workflow patterns, usage cycles and correlations between the execution times of jobs and its properties commonly collected by the Grid middleware for accounting purposes. An automated approach is proposed to identify these dependencies and use them to partition the highly variable workload into subsets of more consistent and predictable behaviour. A range of time-series forecasting models, applied in this context for the first time, were used to model the job execution times as a function of their historical behaviour and associated properties. Based on the resulting predictions of job runtimes a novel scheduling algorithm is able to estimate the latest job start time necessary to meet the requested deadline and sort the queue accordingly to minimise the amount of deadline overrun. The testing of the proposed approach was done using the actual job trace collected from a production Grid facility. The best performing execution time predictor (the auto-regressive moving average method) coupled to workload partitioning based on three simultaneous job properties returned the median absolute percentage error centroid of only 4.75%. This level of prediction accuracy enabled the proposed deadline scheduling method to reduce the average deadline overrun time ten-fold compared to the benchmark batch scheduler. Overall, the thesis demonstrates that deadline scheduling of computational jobs on the Grid is achievable using statistical forecasting of job execution times based on historical information. The proposed approach is easily implementable, substantially self-managing and better matched to the human workflow making it well suited for implementation in the utility Grids of the future

    Taxonomic classification of planning decisions in health care: a review of the state of the art in OR/MS

    Get PDF
    We provide a structured overview of the typical decisions to be made in resource capacity planning and control in health care, and a review of relevant OR/MS articles for each planning decision. The contribution of this paper is twofold. First, to position the planning decisions, a taxonomy is presented. This taxonomy provides health care managers and OR/MS researchers with a method to identify, break down and classify planning and control decisions. Second, following the taxonomy, for six health care services, we provide an exhaustive specification of planning and control decisions in resource capacity planning and control. For each planning and control decision, we structurally review the key OR/MS articles and the OR/MS methods and techniques that are applied in the literature to support decision making
    corecore