1,048 research outputs found

    Packet loss characteristics of IPTV-like traffic on residential links

    Get PDF
    Packet loss is one of the principal threats to quality of experience for IPTV systems. However, the packet loss characteristics of the residential access networks which carry IPTV are not widely understood. We present packet level measurements of streaming IPTV-like traffic over four residential access links, and describe the extent and nature of packet loss we encountered. We discuss the likely impact of these losses for IPTV traffic, and outline steps which can ameliorate this

    Modelling the probability density function of IPTV traffic packet delay variation

    Get PDF
    This article deals with modelling the Probability density function of IPTV traffic packet delay variation. The use of this modelling is in an efficient de-jitter buffer estimation. When an IP packet travels across a network, it experiences delay and its variation. This variation is caused by routing, queueing systems and other influences like the processing delay of the network nodes. When we try to separate these at least three types of delay variation, we need a way to measure these types separately. This work is aimed to the delay variation caused by queueing systems which has the main implications to the form of the Probability density function

    A comparison of Poisson and uniform sampling for active measurements

    Get PDF
    Copyright © 2006 IEEEActive probes of network performance represent samples of the underlying performance of a system. Some effort has gone into considering appropriate sampling patterns for such probes, i.e., there has been significant discussion of the importance of sampling using a Poisson process to avoid biases introduced by synchronization of system and measurements. However, there are unanswered questions about whether Poisson probing has costs in terms of sampling efficiency, and there is some misinformation about what types of inferences are possible with different probe patterns. This paper provides a quantitative comparison of two different sampling methods. This paper also shows that the irregularity in probing patterns is useful not just in avoiding synchronization, but also in determining frequency-domain properties of a system. This paper provides a firm basis for practitioners or researchers for making decisions about the type of sampling they should use in a particular applications, along with methods for the analysis of their outputs.Matthew Rougha

    Parallel, iterative solution of sparse linear systems: Models and architectures

    Get PDF
    A model of a general class of asynchronous, iterative solution methods for linear systems is developed. In the model, the system is solved by creating several cooperating tasks that each compute a portion of the solution vector. A data transfer model predicting both the probability that data must be transferred between two tasks and the amount of data to be transferred is presented. This model is used to derive an execution time model for predicting parallel execution time and an optimal number of tasks given the dimension and sparsity of the coefficient matrix and the costs of computation, synchronization, and communication. The suitability of different parallel architectures for solving randomly sparse linear systems is discussed. Based on the complexity of task scheduling, one parallel architecture, based on a broadcast bus, is presented and analyzed

    A Comparison of Poisson and Uniform Sampling for Active Measurements

    Full text link
    corecore