97 research outputs found

    To Wave Or Not To Wave? Order Release Policies for Warehouses with an Automated Sorter

    Get PDF
    Wave-based release policies are prevalent in warehouses with an automated sorter, and take different forms depending on how much waves overlap and whether the sorter is split for operating purposes. Waveless release is emerging as an alternative policy adopted by an increasing number of firms. While that new policy presents several advantages relative to waves, it also involves the possibility of gridlock at the sorter. In collaboration with a large US online retailer and using an extensive dataset of detailed flow information, we first develop a model with validated predictive accuracy for its warehouses operating under a waveless release policy. We then use that model to compute operational guidelines for dynamically controlling the main parameter of its waveless policy, with the goal of maximizing throughput while keeping the risk of gridlock under a specified threshold. Secondly, we leverage that model and dataset to perform through simulation a performance comparison of wave-based and waveless policies in this context. Our waveless policy yields larger or equal throughput than the best performing wave-based policy with a lower gridlock probability in all scenarios considered. Waveless release policies thus appear to merit very serious consideration by practitioners. Facilities using a non-overlapping wave policy should also consider overlapping waves or a split sorter policy

    Capacity Analysis of Sequential Zone Picking Systems

    Get PDF
    This paper develops a capacity model for sequential zone picking systems. These systems are popular internal transport and order-picking systems because of their scalability, flexibility, high-throughput ability, and fit for use for a wide range of products and order profiles. The major disadvantage of such systems is congestion and blocking under heavy use, leading to long order throughput times. To reduce blocking and congestion, most systems use the block-and-recirculate protocol to dynamically manage workload. In this paper, the various elements of the system, such as conveyor lanes and pick zones, are modeled as a multiclass block-and-recirculate queueing network with capacity constraints on subnetworks. Because of this blocking protocol, the stationary distribution of the queueing network is highly intractable. We propose an approximation method based on jumpover blocking. Multiclass jump-over queueing networks admit a product-form stationary distribution and can be efficiently evaluated by mean value analysis and Norton’s theorem. This method can be applied during the design phase of sequential zone picking systems to determine the number of segments, number and length of zones, buffer capacities, and storage allocation of products to zones to meet performance targets. For a wide range of parameters, the results show that the relative error in the system throughput is typically less than 1% compared with simulation

    Stochastic Models for Order Picking Systems

    Get PDF

    Analysis of a queuing model for slotted ring networks

    Get PDF
    We study a multi-server multi-queue system which is intended to model a local area network with slotted ring protocol. Two special cases of the model are analysed and the results are used to motivate an approach to approximate mean queue lengths in the general model
    • …
    corecore