739 research outputs found

    Decomposing the queue length distribution of processor-sharing models into queue lengths of permanent customer queues

    Get PDF
    We obtain a decomposition result for the steady state queue length distribution in egalitarian processor-sharing (PS) models. In particular, for an egalitarian PS queue with KK customer classes, we show that the marginal queue length distribution for class kk factorizes over the number of other customer types. The factorizing coefficients equal the queue length probabilities of a PS queue for type kk in isolation, in which the customers of the other types reside \textit{ permanently} in the system. Similarly, the (conditional) mean sojourn time for class kk can be obtained by conditioning on the number of permanent customers of the other types. The decomposition result implies linear relations between the marginal queue length probabilities, which also hold for other PS models such as the egalitarian processor-sharing models with state-dependent system capacity that only depends on the total number of customers in the system. Based on the exact decomposition result for egalitarian PS queues, we propose a similar decomposition for discriminatory processor-sharing (DPS) models, and numerically show that the approximation is accurate for moderate differences in service weights. \u

    Heavy-traffic analysis of a multiple-phase network with discriminatory processor sharing

    Get PDF
    We analyze a generalization of the discriminatory processor-sharing (DPS) queue in a heavy-traffic setting. Customers present in the system are served simultaneously at rates controlled by a vector of weights. We assume that customers have phase-type distributed service requirements and allow that customers have different weights in various phases of their service. In our main result we establish a state-space collapse for the queue-length vector in heavy traffic. The result shows that in the limit, the queue-length vector is the product of an exponentially distributed random variable and a deterministic vector. This generalizes a previous result by Rege and Sengupta [Rege, K. M., B. Sengupta. 1996. Queue length distribution for the discriminatory processor-sharing queue. Oper. Res. 44(4) 653-657], who considered a DPS queue with exponentially distributed service requirements. Their analysis was based on obtaining all moments of the queue-length distributions by solving systems of linear equations. We undertake a more direct approach by showing that the probability-generating function satisfies a partial differential equation that allows a closed-form solution after passing to the heavy-traffic limit. Making use of the state-space collapse result, we derive interesting properties in heavy traffic: (i) For the DPS queue, we obtain that, conditioned on the number of customers in the system, the residual service requirements are asymptotically independent and distributed according to the forward recurrence times. (ii) We then investigate how the choice for the weights influences the asymptotic performance of the system. In particular, for the DPS queue we show that the scaled holding cost reduces as classes with a higher value for dk/E(B fwd k) obtain a larger share of the capacity, where dk is the cost associated to class k, and E(B fwd k) is the forward recurrence time of the class-k service requirement. The applicability of this result for a moderately loaded system is investigated by numerical experiments

    An analytical packet/flow-level modelling approach for wireless LANs with Quality-of-Service support

    Get PDF
    We present an analytical packet/flow-level modelling approach for the performance analysis of IEEE 802.11e WLAN, where we explicitly take into account QoS differentiation mechanisms based on minimum contention window size values and Arbitration InterFrame Space (AIFS) values, as included in the Enhanced Distributed Channel Access (EDCA) protocol of the 802.11e standard. We first enhance the packet-level approach previously used for best-effort WLANs to include traffic classes with different QoS requirements. The packet-level model approach yields service weights that discriminate among traffic classes. From these observations, the packet/flow-level model for 802.11e is the \textit{generalized} discriminatory processor-sharing (GDPS) queueing model where the state-dependent system capacity is distributed among active traffic classes according to state-dependent priority weights. Extensive simulations show that the discriminatory processor-sharing model closely represents the flow behavior of 802.11e

    Heavy-traffic limits for Discriminatory Processor Sharing models with joint batch arrivals

    Get PDF
    We study the performance of Discriminatory Processor Sharing (DPS) systems, with exponential service times and in which batches of customers of different types may arrive simultaneously according to a Poisson process. We show that the stationary joint queue-length distribution exhibits state-space collapse in heavy traffic: as the load ρ tends to 1, the scaled joint queue-length vector (1−ρ)Q converges in distribution to the product of a determin

    Heavy-traffic analysis of a multiple-phase network with discriminatory processor sharing

    Get PDF
    We analyze a generalization of the Discriminatory Processor Sharing (DPS) queue in a heavy-traffic setting. Customers present in the system are served simultaneously at rates controlled by a vector of weights. We assume that customers have phase-type distributed service requirements and allow that customers have different weights in various phases of their service. In our main result we establish a state-space collapse for the queue length vector in heavy traffic. The result shows that in the limit, the queue length vector is the product of an exponentially distributed random variable and a deterministic vector. This generalizes a previous result by Rege and Sengupta (1996) who considered a DPS queue with exponentially distributed service requirements. Their analysis was based on obtaining all moments of the queue length distributions by solving systems of linear equations. We undertake a more direct approach by showing that the probability generating function satisfies a partial differential equation that allows a closed-form solution after passing to the heavy-traffic limit. Making use of the state-space collapse result, we derive interesting properties in heavy traffic: (i) For the DPS queue we obtain that, conditioned on the number of customers in the system, the residual service requirements are asymptotically i.i.d. according to the forward recurrence times. (ii) We then investigate how the choice for the weights influences the asymptotic performance of the system. In particular, for the DPS queue we show that the scaled holding cost reduces as classes with a higher value for d_k/E(B_k^fwd) obtain a larger share of the capacity, where d_k is the cost associated to class k, and E(B_k^fwd) is the forward recurrence time of the class-k service requirement. The applicability of this result for a moderately loaded system is investigated by numerical experiments

    Heavy-traffic analysis of a multiple-phase network with discriminatory processor sharing

    Get PDF
    We analyze a generalization of the Discriminatory Processor Sharing (DPS) queue in a heavy-traffic setting. Customers present in the system are served simultaneously at rates controlled by a vector of weights. We assume that customers have phase-type distributed service requirements and allow that customers have different weights in various phases of their service. In our main result we establish a state-space collapse for the queue length vector in heavy traffic. The result shows that in the limit, the queue length vector is the product of an exponentially distributed random variable and a deterministic vector. This generalizes a previous result by Rege and Sengupta (1996) who considered a DPS queue with exponentially distributed service requirements. Their analysis was based on obtaining all moments of the queue length distributions by solving systems of linear equations. We undertake a more direct approach by showing that the probability generating function satisfies a partial differential equation that allows a closed-form solution after passing to the heavy-traffic limit. Making use of the state-space collapse result, we derive interesting properties in heavy traffic: (i) For the DPS queue we obtain that, conditioned on the number of customers in the system, the residual service requirements are asymptotically i.i.d. according to the forward recurrence times. (ii) We then investigate how the choice for the weights influences the asymptotic performance of the system. In particular, for the DPS queue we show that the scaled holding cost reduces as classes with a higher value for d_k/E(B_k^fwd) obtain a larger share of the capacity, where d_k is the cost associated to class k, and E(B_k^fwd) is the forward recurrence time of the class-k service requirement. The applicability of this result for a moderately loaded system is investigated by numerical experiments
    • 

    corecore