58 research outputs found

    A batch-service queueing model with a discrete batch Markovian arrival process

    Get PDF
    Queueing systems with batch service have been investigated extensively during the past decades. However, nearly all the studied models share the common feature that an uncorrelated arrival process is considered, which is unrealistic in several real-life situations. In this paper, we study a discrete-time queueing model, with a server that only initiates service when the amount of customers in system (system content) reaches or exceeds a threshold. Correlation is taken into account by assuming a discrete batch Markovian arrival process (D-BMAP), i.e. the distribution of the number of customer arrivals per slot depends on a background state which is determined by a first-order Markov chain. We deduce the probability generating function of the system content at random slot marks and we examine the influence of correlation in the arrival process on the behavior of the system. We show that correlation merely has a small impact on the threshold that minimizes the mean system content. In addition, we demonstrate that correlation might have a significant influence on the system content and therefore has to be included in the model

    Single server retrial queueing models.

    Get PDF
    Most retrial queueing research assumes that each retrial customer has its own orbit, and the retrial customers retry to enter service independently of each other. A small selection of papers assume that the retrial customers themselves form a queue, and only one customer from the retrial queue can attempt to enter at any given time. Retrial queues with exponential retrial times have been extensively studied, but little attention has been paid to retrial queues with general retrial times. In this thesis, we consider four retrial queueing models of the type in which the retrial customers form their own queue. Model I is a type of M/G/1 retrial queue with general retrial times and server subject to breakdowns and repairs. In addition, we allow the customer in service to leave the service position and keep retrying for service until the server has been repaired. After repair, the server is not allowed to begin service on other customers until the current customer (in service) returns from its temporary absence. We say that the server is in reserved mode, when the current customer is absent and the server has already been repaired. We define the server to be blocked if the server is busy, under repair or in reserved mode. In Model II, we consider a single unreliable server retrial queue with general retrial times and balking customers. If an arriving primary customer finds the server blocked, the customer either enters a retrial queue with probability p or leaves the system with probability 1 - p. An unsuccessful arriving customer from the retrial queue either returns to its position at the head of the retrial queue with probability q or leaves the system with the probability 1 - q. If the server fails, the customer in service either remains in service with probability r or enters a retrial service orbit with probability 1 - r and keeps returning until the server is repaired. We give a formal description for these two retrial queueing models, with examples. The stability of the system is analyzed by using an embedded Markov chain. We get a necessary and sufficient condition for the ergodicity of the embedded Markov chain. By employing the method of supplementary variables, we describe the state of the system at each point in time. A system of partial differential equations related to the models is derived from a stochastic analysis of the model. The steady state distribution of the system is obtained by means of probability generating functions. In steady state, some performance measures of the system are reported, the distribution of some important performance characteristics in the waiting process are investigated, and the busy period is discussed. In addition, some numerical results are given. Model III consists of a single-server retrial queue with two primary sources and both a retrial queue and retrial orbits. Some results are obtained using matrix analytic methods. Also simulation results are obtained. Model IV consists of a single server system in which the retrial customers form a queue. The service times are discrete. A stability condition and performance measures are presented.Dept. of Mathematics and Statistics. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .W87. Source: Dissertation Abstracts International, Volume: 67-07, Section: B, page: 3883. Thesis (Ph.D.)--University of Windsor (Canada), 2006

    Markovian arrivals in stochastic modelling: a survey and some new results

    Get PDF
    This paper aims to provide a comprehensive review on Markovian arrival processes (MAPs), which constitute a rich class of point processes used extensively in stochastic modelling. Our starting point is the versatile process introduced by Neuts (1979) which, under some simplified notation, was coined as the batch Markovian arrival process (BMAP). On the one hand, a general point process can be approximated by appropriate MAPs and, on the other hand, the MAPs provide a versatile, yet tractable option for modelling a bursty flow by preserving the Markovian formalism. While a number of well-known arrival processes are subsumed under a BMAP as special cases, the literature also shows generalizations to model arrival streams with marks, nonhomogeneous settings or even spatial arrivals. We survey on the main aspects of the BMAP, discuss on some of its variants and generalizations, and give a few new results in the context of a recent state-dependent extension.Peer Reviewe

    The NxD-BMAP/G/1 queueing model : queue contents and delay analysis

    Get PDF
    We consider a single-server discrete-time queueing system with N sources, where each source is modelled as a correlated Markovian customer arrival process, and the customer service times are generally distributed. We focus on the analysis of the number of customers in the queue, the amount of work in the queue, and the customer delay. For each of these quantities, we will derive an expression for their steady-state probability generating function, and from these results, we derive closed-form expressions for key performance measures such as their mean value, variance, and tail distribution. A lot of emphasis is put on finding closed-form expressions for these quantities that reduce all numerical calculations to an absolute minimum
    corecore