662 research outputs found

    Queue Profile Estimation in Congested Urban Networks with Probe Data

    Get PDF
    Queues at signalized intersections are the main cause of traffic delays and travel time variability in urban networks. In this article, we propose a method to estimate queue profiles that are traffic shockwave polygons in the time-space plane describing the spatiotemporal formation and dissipation of queues. The method integrates the collective effect of dispersed probe vehicle data with traffic flow shockwave analysis and data mining techniques. The proposed queue profile estimation method requires position and velocity data of probe vehicles; however, any explicit information of signal settings and arrival distribution is indispensable. Moreover, the method captures interdependencies in queue evolutions of successive intersections. The significance of the proposed method is that it is applicable in oversaturated conditions and includes queue spillover identification. Numerical results of simulation experiments and tests on NGSIM field data, with various penetration rates and sampling intervals, reveal the promising and robust performance of the proposed method compared with a uniform arrival queue estimation procedure. The method provides a thorough understanding of urban traffic flow dynamics and has direct applications for delay analysis, queue length estimation, signal settings estimation, and vehicle trajectory reconstruction

    What Is an Effective Way to Measure Arterial Demand When It Exceeds Capacity?

    Get PDF
    This project focused on developing and evaluating methods for estimating demand volume for oversaturated corridors. Measuring demand directly with vehicle sensors is not possible when demand is larger than capacity for an extended period, as the queue grows beyond the sensor, and the flow measurements at a given point cannot exceed the capacity of the section. The main objective of the study was to identify and develop methods that could be implemented in practice based on readily available data. To this end, two methods were proposed: an innovative method based on shockwave theory; and the volume delay function adapted from the Highway Capacity Manual. Both methods primarily rely on probe vehicle speeds (e.g., from INRIX) as the input data and the capacity of the segment or bottleneck being analyzed. The proposed methods were tested with simulation data and validated based on volume data from the field. The results show both methods are effective for estimating the demand volume and produce less than 4% error when tested with field data

    Traffic modeling, estimation and control for large-scale congested urban networks

    Get PDF
    Part I of the thesis investigates novel urban traffic state estimation methods utilizing probe vehicle data. Chapter 2 proposes a method to integrate the collective effect of dispersed probe data with traffic kinematic wave theory and data mining techniques to model the spatial and temporal dynamics of queue formation and dissipation in arterials. The queue estimation method captures interdependencies in queue evolutions of successive intersections, and moreover, the method is applicable in oversaturated conditions and includes a queue spillover statistical inference procedure. Chapter 3 develops a travel time reliability model to estimate arterial route travel times distribution (TTD) considering spatial and temporal correlations between traffic states in consecutive links. The model uses link-level travel time data and a heuristic grid clustering method to estimate the state structure and transition probabilities of a Markov chain. By applying the Markov chain procedure, the correlation between states of successive links is integrated and the route-level TTD is estimated. The methods in Part I are tested with various probe vehicle penetration rates on case studies with field measurements and simulated data. The methods are straightforward in implementation and have demonstrated promising performance and accuracy through numerous experiments. Part II studies network-level modeling and control of large-scale urban networks. Chapter 4 is the pioneer that introduces the urban perimeter control for two-region urban cities as an elegant control strategy to decrease delays in urban networks. Perimeter controllers operate on the border between the two regions, and manipulate the percentages of transfer flows between the two regions, such that the number of trips reaching their destinations is maximized. The optimal perimeter control problem is solved by the model predictive control (MPC) scheme, where the prediction model and the plant (reality) are formulated by macroscopic fundamental diagrams (MFD). Chapter 5 extends the perimeter control strategy and MFD modeling to mixed urban-freeway networks to provide a holistic approach for large-scale integrated corridor management (ICM). The network consists of two urban regions, each one with a well-defined MFD, and a freeway, modeled by the asymmetric cell transmission model, that is an alternative commuting route which has one on-ramp and one off-ramp within each urban region. The optimal traffic control problem is solved by the MPC approach to minimize total delay in the entire network considering several control policies with different levels of urban-freeway control coordination. Chapter 6 integrates traffic heterogeneity dynamics in large-scale urban modeling and control to develop a hierarchical control strategy for heterogeneously congested cities. Two aggregated models, region- and subregion-based MFDs, are introduced to study the effect of link density heterogeneity on the scatter and hysteresis of MFD. A hierarchical perimeter flow control problem is proposed to minimize the network delay and to homogenize the distribution of congestion. The first level of the hierarchical control problem is solved by the MPC approach, where the prediction model is the aggregated parsimonious region-based MFD and the plant is the subregion-based MFD, which is a more detailed model. At the lower level, a feedback controller tries to maximize the network outflow, by increasing regional homogeneity

    A new methodological framework for within-day dynamic estimation of pollutant emissions in a large congested urban network

    Get PDF
    This paper presents a new methodological framework to address the problem of estimating pollutant emissions for large congested urban networks in a within-day dynamic context. It consists of three main modules: 1) a module to compute pollutant emissions for general links; 2) a module to compute pollutant emissions for all links approaching a signalized intersection; 3) a module to compute pollutant emissions for all links approaching an unsignalized intersection. A dynamic mesoscopic assignment model is performed to derive the main dynamic input of each one of the modules. All the modules have been tested in a real case study (the district of Eur in the city of Rome, Italy), so confirming the reliability of the developed models and their applicability for the estimation of pollutant emissions

    QUANTIFYING NON-RECURRENT DELAY USING PROBE-VEHICLE DATA

    Get PDF
    Current practices based on estimated volume and basic queuing theory to calculate delay resulting from non-recurrent congestion do not account for the day-to-day fluctuations in traffic. In an attempt to address this issue, probe GPS data are used to develop impact zone boundaries and calculate Vehicle Hours of Delay (VHD) for incidents stored in the Traffic Response and Incident Management Assisting the River City (TRIMARC) incident log in Louisville, KY. Multiple linear regression along with stepwise selection is used to generate models for the maximum queue length, the average queue length, and VHD to explore the factors that explain the impact boundary and VHD. Models predicting queue length do not explain significant amounts of variance but can be useful in queue spillback studies. Models predicting VHD are as effective as the data collected; models using cheaper-to-collect data sources explain less variance; models collecting more detailed data explained more variance. Models for VHD can be useful in incident management after action reviews and predicting road user costs

    Public transport trajectory planning with probabilistic guarantees

    Get PDF
    The paper proposes an eco-cruise control strategy for urban public transportbuses. The aim of the velocity control is ensuring timetable adherence, whileconsidering upstream queue lengths at traffic lights in a probabilistic way. Thecontribution of the paper is twofold. First, the shockwave profile model (SPM)is extended to capture the stochastic nature of traffic queue lengths. The modelis adequate to describe frequent traffic state interruptions at signalized intersections.Based on the distribution function of stochastic traffic volume demand,the randomness in queue length, wave fronts, and vehicle numbers are derived.Then, an outlook is provided on its applicability as a full-scale urban traffic networkmodel. Second, a shrinking horizon model predictive controller (MPC) isproposed for ensuring timetable reliability. The intention is to calculate optimalvelocity commands based on the current position and desired arrival time of thebus while considering upcoming delays due to red signals and eventual queues.The above proposed stochastic traffic model is incorporated in a rolling horizonoptimization via chance-constraining. In the optimization, probabilistic guaranteesare formulated to minimize delay due to standstill in queues at signalized intersections. Optimization results are analyzed from two particular aspects, (i)feasibility and (ii) closed-loop performance point of views. The novel stochasticprofile model is tested in a high fidelity traffic simulator context. Comparativesimulation results show the viability and importance of stochastic bounds in urbantrajectory design. The proposed algorithm yields smoother bus trajectoriesat an urban corridor, suggesting energy savings compared to benchmark controlstrategies

    Connected and Automated Vehicles in Urban Transportation Cyber-Physical Systems

    Get PDF
    Understanding the components of Transportation Cyber-Physical Systems (TCPS), and inter-relation and interactions among these components are key factors to leverage the full potentials of Connected and Automated Vehicles (CAVs). In a connected environment, CAVs can communicate with other components of TCPS, which include other CAVs, other connected road users, and digital infrastructure. Deploying supporting infrastructure for TCPS, and developing and testing CAV-specific applications in a TCPS environment are mandatory to achieve the CAV potentials. This dissertation specifically focuses on the study of current TCPS infrastructure (Part 1), and the development and verification of CAV applications for an urban TCPS environment (Part 2). Among the TCPS components, digital infrastructure bears sheer importance as without connected infrastructure, the Vehicle-to-Infrastructure (V2I) applications cannot be implemented. While focusing on the V2I applications in Part 1, this dissertation evaluates the current digital roadway infrastructure status. The dissertation presents a set of recommendations, based on a review of current practices and future needs. In Part 2, To synergize the digital infrastructure deployment with CAV deployments, two V2I applications are developed for CAVs for an urban TCPS environment. At first, a real-time adaptive traffic signal control algorithm is developed, which utilizes CAV data to compute the signal timing parameters for an urban arterial in the near-congested traffic condition. The analysis reveals that the CAV-based adaptive signal control provides operational benefits to both CVs and non-CVs with limited data from 5% CVs, with 5.6% average speed increase, and 66.7% and 32.4% average maximum queue length and stopped delay reduction, respectively, on a corridor compared to the actuated coordinated scenario. The second application includes the development of a situation-aware left-turning CAV controller module, which optimizes CAV speed based on the follower driver\u27s aggressiveness. Existing autonomous vehicle controllers do not consider the surrounding driver\u27s behavior, which may lead to road rage, and rear-end crashes. The analysis shows that the average travel time reduction for the scenarios with 600, 800 and 1000 veh/hr/lane opposite traffic stream are 61%, 23%, and 41%, respectively, for the follower vehicles, if the follower driver\u27s behavior is considered by CAVs

    Measuring Congestion for Strategic Highway Investment for Tomorrow (SHIFT) Implementation (PL-32)

    Get PDF
    The Kentucky Transportation Cabinet (KYTC) has moved toward a data-driven decision-making process, the Strategic Highway Investment Formula for Tomorrow (SHIFT), to allocate funds for highway improvement projects. SHIFT requires that candidate projects be scored on five critical metrics: safety, asset management, congestion, economic growth, and benefit/cost analysis. The measure of congestion used in SHIFT 2018 was a combination of volume-to-service flow ratio (VSF) and design hourly volume (DHV). VSF is a traditional performance measure developed based on limited data, primarily for sketch planning purposes. However, it does not accurately reflect the dynamics of traffic congestion of many facilities. This report presents a framework for integrating third-party speed data (acquired from HERE Technologies) into traditional congestion performance measures for use in SHIFT 2020. The speed data came from aggregated GPS-based vehicle locations at various temporal and spatial resolutions collected from 2015 to 2017. Data assessments undertaken by the research team found these data offer adequate coverages for monitoring congestion performance on most highways in Kentucky, except for some rural low-volume roads. An automated process was developed to conflate HERE’s proprietary network, to which the speed data are attached, and KYTC’s Highway Information System (HIS) network. Spatial integration lets the Cabinet link speed data to a state-maintained inventory database, enabling additional applications beyond those addressed in this study, such as the calibration and validation of travel demand models. The research team evaluated several performance measures that could potentially be applied in Kentucky. Based on this assessment, Vehicle Hours of Delay (VHD) is recommended as the best measure for quantifying congestion on a highway section. Two other measures – Vehicle Hours of Delay Per Mile (VHDPM) and Average Hours of Delay (AHD) – may be considered alongside VHD when performing network screening to identify bottlenecks. The research team, based on feedback from Cabinet work groups, developed a procedure for estimating VHD on highway improvement projects. A white paper in Appendix A documents this procedure
    • …
    corecore