9,616 research outputs found

    Content Based Status Updates

    Get PDF
    Consider a stream of status updates generated by a source, where each update is of one of two types: high priority or ordinary (low priority). These updates are to be transmitted through a network to a monitor. However, the transmission policy of each packet depends on the type of stream it belongs to. For the low priority stream, we analyze and compare the performances of two transmission schemes: (i) Ordinary updates are served in a First-Come-First-Served (FCFS) fashion, whereas, in (ii), the ordinary updates are transmitted according to an M/G/1/1 with preemption policy. In both schemes, high priority updates are transmitted according to an M/G/1/1 with preemption policy and receive preferential treatment. An arriving priority update discards and replaces any currently-in-service high priority update, and preempts (with eventual resume for scheme (i)) any ordinary update. We model the arrival processes of the two kinds of updates, in both schemes, as independent Poisson processes. For scheme (i), we find the arrival and service rates under which the system is stable and give closed-form expressions for average peak age and a lower bound on the average age of the ordinary stream. For scheme (ii), we derive closed-form expressions for the average age and average peak age of the high priority and low priority streams. We finally show that, if the service time is exponentially distributed, the M/M/1/1 with preemption policy leads to an average age of the low priority stream higher than the one achieved using the FCFS scheme. Therefore, the M/M//1/1 with preemption policy, when applied on the low priority stream of updates and in the presence of a higher priority scheme, is not anymore the optimal transmission policy from an age point of view

    Reliable Transmission of Short Packets through Queues and Noisy Channels under Latency and Peak-Age Violation Guarantees

    Get PDF
    This work investigates the probability that the delay and the peak-age of information exceed a desired threshold in a point-to-point communication system with short information packets. The packets are generated according to a stationary memoryless Bernoulli process, placed in a single-server queue and then transmitted over a wireless channel. A variable-length stop-feedback coding scheme---a general strategy that encompasses simple automatic repetition request (ARQ) and more sophisticated hybrid ARQ techniques as special cases---is used by the transmitter to convey the information packets to the receiver. By leveraging finite-blocklength results, the delay violation and the peak-age violation probabilities are characterized without resorting to approximations based on large-deviation theory as in previous literature. Numerical results illuminate the dependence of delay and peak-age violation probability on system parameters such as the frame size and the undetected error probability, and on the chosen packet-management policy. The guidelines provided by our analysis are particularly useful for the design of low-latency ultra-reliable communication systems.Comment: To appear in IEEE journal on selected areas of communication (IEEE JSAC

    Multicast With Prioritized Delivery: How Fresh is Your Data?

    Full text link
    We consider a multicast network in which real-time status updates generated by a source are replicated and sent to multiple interested receiving nodes through independent links. The receiving nodes are divided into two groups: one priority group consists of kk nodes that require the reception of every update packet, the other non-priority group consists of all other nodes without the delivery requirement. Using age of information as a freshness metric, we analyze the time-averaged age at both priority and non-priority nodes. For shifted-exponential link delay distributions, the average age at a priority node is lower than that at a non-priority node due to the delivery guarantee. However, this advantage for priority nodes disappears if the link delay is exponential distributed. Both groups of nodes have the same time-averaged age, which implies that the guaranteed delivery of updates has no effect the time-averaged freshness.Comment: IEEE SPAWC 201

    Optimizing Age of Information in Wireless Networks with Perfect Channel State Information

    Full text link
    Age of information (AoI), defined as the time elapsed since the last received update was generated, is a newly proposed metric to measure the timeliness of information updates in a network. We consider AoI minimization problem for a network with general interference constraints, and time varying channels. We propose two policies, namely, virtual-queue based policy and age-based policy when the channel state is available to the network scheduler at each time step. We prove that the virtual-queue based policy is nearly optimal, up to a constant additive factor, and the age-based policy is at-most factor 4 away from optimality. Comparing with our previous work, which derived age optimal policies when channel state information is not available to the scheduler, we demonstrate a 4 fold improvement in age due to the availability of channel state information

    Uplink Age of Information of Unilaterally Powered Two-way Data Exchanging Systems

    Full text link
    We consider a two-way data exchanging system where a master node transfers energy and data packets to a slave node alternatively. The slave node harvests the transferred energy and performs information transmission as long as it has sufficient energy for current block, i.e., according to the best-effort policy. We examine the freshness of the received packets at the master node in terms of age of information (AoI), which is defined as the time elapsed after the generation of the latest received packet. We derive average uplink AoI and uplink data rate as functions of downlink data rate in closed form. The obtained results illustrate the performance limit of the unilaterally powered two-way data exchanging system in terms of timeliness and efficiency. The results also specify the achievable tradeoff between the data rates of the two-way data exchanging system.Comment: INFOCOM 2018 AOI Wkshp, 6 page
    • …
    corecore