72,019 research outputs found

    Short answer versus multiple choice examination questions for first year chemistry

    Get PDF
    Multiple choice (MC) examinations are frequently used for the summative assessment of large classes because of their ease of marking and their perceived objectivity. However, traditional MC formats usually lead to a surface approach to learning, and do not allow students to demonstrate the depth of their knowledge or understanding. For these reasons, we have trialled the incorporation of short answer (SA) questions into the final examination of two first year chemistry units, alongside MC questions. Students’ overall marks were expected to improve, because they were able to obtain partial marks for the SA questions. Although large differences in some individual students’ performance in the two sections of their examinations were observed, most students received a similar percentage mark for their MC as for their SA sections and the overall mean scores were unchanged. In-depth analysis of all responses to a specific question, which was used previously as a MC question and in a subsequent semester in SA format, indicates that the SA format can have weaknesses due to marking inconsistencies that are absent for MC questions. However, inclusion of SA questions improved student scores on the MC section in one examination, indicating that their inclusion may lead to different study habits and deeper learning. We conclude that questions asked in SA format must be carefully chosen in order to optimise the use of marking resources, both financial and human, and questions asked in MC format should be very carefully checked by people trained in writing MC questions. These results, in conjunction with an analysis of the different examination formats used in first year chemistry units, have shaped a recommendation on how to reliably and cost-effectively assess first year chemistry, while encouraging higher order learning outcomes

    A Flipped Classroom Redesign in General Chemistry

    Get PDF
    The flipped classroom continues to attract significant attention in higher education. Building upon our recent parallel controlled study of the flipped classroom in a second-term general chemistry course (J. Chem. Educ., 2016, 93, 13–23), here we report on a redesign of the flipped course aimed at scaling up total enrollment while keeping discussion sizes small (i.e.,students), and maintaining equivalent contact hour load for faculty and workload for students. To that end, the course format featured lecture contact pushed outside of the classroom in the form of video lectures (mean duration 13 minutes) paired with online homework sets, and three parallel weekly one-hour discussion sections were held in adjoining lab rooms immediately prior to the three-hour laboratory session. As in our previous design, the discussion sections were led by teaching assistants; however, the weekly discussion meeting was shortened from 75 minutes to 50 minutes, and the primary instructor “floated” between the three parallel sessions. Two such sessions were held each week, affording a possible enrollment of 144; initial enrollment was 141, with students self-selecting into the course. We examine student performance in and satisfaction with the course using: (1) a pre-test/post-test design based on the paired questions American Chemical Society (ACS) first-term and second-term exams, (2) data on DFW (D, F, withdrawal) rates, and (3) student evaluations

    Educational Research Abstracts

    Get PDF

    Review of standards in GCE A level chemistry : 2003 and 2008

    Get PDF

    Investigation into the marking of CCEA A level chemistry summer 2010: stage 1 report

    Get PDF

    Analysis of photochemical and dark glyoxal uptake: Implications for SOA formation

    Get PDF
    The dependence of glyoxal uptake onto deliquesced ammonium sulfate seed aerosol was studied under photochemical (light + hydroxyl radical (OH)) and dark conditions. In this study, the chemical composition of aerosol formed from glyoxal is identical in the presence or absence of OH. In addition, there was no observed OH dependence on either glyoxal uptake or glyoxal-driven aerosol growth for this study. These findings demonstrate that, for the system used here, glyoxal uptake is not affected by the presence of OH. In combination with previous studies, this shows that the exact nature of the type of seed aerosol, in particular the presence of a coating, has a large influence on fast photochemical uptake of glyoxal. Due to the challenge of relating this seed aerosol dependence to ambient conditions, this work highlights the resulting difficulty in quantitatively including SOA formation from glyoxal in models

    Designing algorithms to aid discovery by chemical robots

    Get PDF
    Recently, automated robotic systems have become very efficient, thanks to improved coupling between sensor systems and algorithms, of which the latter have been gaining significance thanks to the increase in computing power over the past few decades. However, intelligent automated chemistry platforms for discovery orientated tasks need to be able to cope with the unknown, which is a profoundly hard problem. In this Outlook, we describe how recent advances in the design and application of algorithms, coupled with the increased amount of chemical data available, and automation and control systems may allow more productive chemical research and the development of chemical robots able to target discovery. This is shown through examples of workflow and data processing with automation and control, and through the use of both well-used and cutting-edge algorithms illustrated using recent studies in chemistry. Finally, several algorithms are presented in relation to chemical robots and chemical intelligence for knowledge discovery
    • 

    corecore