17,661 research outputs found

    A Dependency-Based Neural Network for Relation Classification

    Full text link
    Previous research on relation classification has verified the effectiveness of using dependency shortest paths or subtrees. In this paper, we further explore how to make full use of the combination of these dependency information. We first propose a new structure, termed augmented dependency path (ADP), which is composed of the shortest dependency path between two entities and the subtrees attached to the shortest path. To exploit the semantic representation behind the ADP structure, we develop dependency-based neural networks (DepNN): a recursive neural network designed to model the subtrees, and a convolutional neural network to capture the most important features on the shortest path. Experiments on the SemEval-2010 dataset show that our proposed method achieves state-of-art results.Comment: This preprint is the full version of a short paper accepted in the annual meeting of the Association for Computational Linguistics (ACL) 2015 (Beijing, China

    Distributed Tree Kernels

    Get PDF
    In this paper, we propose the distributed tree kernels (DTK) as a novel method to reduce time and space complexity of tree kernels. Using a linear complexity algorithm to compute vectors for trees, we embed feature spaces of tree fragments in low-dimensional spaces where the kernel computation is directly done with dot product. We show that DTKs are faster, correlate with tree kernels, and obtain a statistically similar performance in two natural language processing tasks.Comment: ICML201

    Designing Semantic Kernels as Implicit Superconcept Expansions

    Get PDF
    Recently, there has been an increased interest in the exploitation of background knowledge in the context of text mining tasks, especially text classification. At the same time, kernel-based learning algorithms like Support Vector Machines have become a dominant paradigm in the text mining community. Amongst other reasons, this is also due to their capability to achieve more accurate learning results by replacing standard linear kernel (bag-of-words) with customized kernel functions which incorporate additional apriori knowledge. In this paper we propose a new approach to the design of ‘semantic smoothing kernels’ by means of an implicit superconcept expansion using well-known measures of term similarity. The experimental evaluation on two different datasets indicates that our approach consistently improves performance in situations where (i) training data is scarce or (ii) the bag-ofwords representation is too sparse to build stable models when using the linear kernel
    • …
    corecore