1,518 research outputs found

    Econometrics meets sentiment : an overview of methodology and applications

    Get PDF
    The advent of massive amounts of textual, audio, and visual data has spurred the development of econometric methodology to transform qualitative sentiment data into quantitative sentiment variables, and to use those variables in an econometric analysis of the relationships between sentiment and other variables. We survey this emerging research field and refer to it as sentometrics, which is a portmanteau of sentiment and econometrics. We provide a synthesis of the relevant methodological approaches, illustrate with empirical results, and discuss useful software

    Realizing Petabyte Scale Acoustic Modeling

    Full text link
    Large scale machine learning (ML) systems such as the Alexa automatic speech recognition (ASR) system continue to improve with increasing amounts of manually transcribed training data. Instead of scaling manual transcription to impractical levels, we utilize semi-supervised learning (SSL) to learn acoustic models (AM) from the vast firehose of untranscribed audio data. Learning an AM from 1 Million hours of audio presents unique ML and system design challenges. We present the design and evaluation of a highly scalable and resource efficient SSL system for AM. Employing the student/teacher learning paradigm, we focus on the student learning subsystem: a scalable and robust data pipeline that generates features and targets from raw audio, and an efficient model pipeline, including the distributed trainer, that builds a student model. Our evaluations show that, even without extensive hyper-parameter tuning, we obtain relative accuracy improvements in the 10 to 20%\% range, with higher gains in noisier conditions. The end-to-end processing time of this SSL system was 12 days, and several components in this system can trivially scale linearly with more compute resources.Comment: 2156-3357 \copyright 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications standards/publications/rights/index.html for more informatio

    Learning Provably Useful Representations, with Applications to Fairness

    Get PDF
    Representation learning involves transforming data so that it is useful for solving a particular supervised learning problem. The aim is to learn a representation function which maps inputs to some representation space, and an hypothesis which maps the representation space to targets. It is possible to learn a representation function using unlabeled data or data from a probability distribution other than that of the main problem of interest, which is helpful if labeled data is scarce. This approach has been successfully applied in practice, for example through pre-trained neural networks in computer vision and word embeddings in natural language processing. This thesis explores when it is possible to learn representations that are provably useful. We consider learning a representation function from unlabeled data, and propose an approach to identifying conditions where this technique will be useful for a subsequent supervised learning task. The approach requires shared structure in the labeled and unlabeled distributions, as well as a compatible representation function class and hypothesis class. We provide an example where representation learning can exploit cluster structure present in the data. We also consider learning a representation function from a source task distribution and re-using it on a target task of interest, and again propose conditions where this approach will be successful. In this case the conditions depend on shared structure between source and target task distributions. We provide an example involving the transfer of weights in a two-layer feedforward neural network. Representation learning can be applied to another topic of interest: fairness in machine learning. The issue of fairness arises when machine learning systems make or provide advice on decisions about people. A common approach to defining fairness is measuring differences in decisions made by an algorithm for one demographic group compared to another. One approach to preventing discrimination against particular groups is to learn a representation of the data from which it is not possible for an adversary to determine an individual's group membership, but which preserves other useful information. We quantify the costs and benefits of such an approach with respect to several possible fairness definitions. We also examine the relationships between different definitions of fairness and show cases where they cannot simultaneously be satisfied. We explore the use of representation learning for fairness through two case studies: predicting domestic violence recidivism while avoiding discrimination on the basis of race, and predicting student outcomes at university while avoiding discrimination on the basis of gender. Our case studies reveal both the utility of fair representation learning and the trade-offs between accuracy and the definitions of fairness considered

    Deep-Spying: Spying using Smartwatch and Deep Learning

    Full text link
    Wearable technologies are today on the rise, becoming more common and broadly available to mainstream users. In fact, wristband and armband devices such as smartwatches and fitness trackers already took an important place in the consumer electronics market and are becoming ubiquitous. By their very nature of being wearable, these devices, however, provide a new pervasive attack surface threatening users privacy, among others. In the meantime, advances in machine learning are providing unprecedented possibilities to process complex data efficiently. Allowing patterns to emerge from high dimensional unavoidably noisy data. The goal of this work is to raise awareness about the potential risks related to motion sensors built-in wearable devices and to demonstrate abuse opportunities leveraged by advanced neural network architectures. The LSTM-based implementation presented in this research can perform touchlogging and keylogging on 12-keys keypads with above-average accuracy even when confronted with raw unprocessed data. Thus demonstrating that deep neural networks are capable of making keystroke inference attacks based on motion sensors easier to achieve by removing the need for non-trivial pre-processing pipelines and carefully engineered feature extraction strategies. Our results suggest that the complete technological ecosystem of a user can be compromised when a wearable wristband device is worn.Comment: Security, Side-Channel Attack, Keystroke Inference, Motion Sensors, Deep Learning, Recurrent Neural Network, Wearable Computin

    Tool for the Analysis of Human Interaction with Two-Dimensional Printed Imagery

    Get PDF
    The study of human vision can include our interaction with objects. These studies include behavior modeling, understanding visual attention and motor guidance, and enhancing user experiences. But all these studies have one thing in common. To analyze the data in detail, researchers typically have to analyze video data frame by frame. Real world interaction data often comprises of data from both eye and hand. Analyzing such data frame by frame can get very tedious and time-consuming. A calibrated scene video from an eye-tracker captured at 120 Hz for 3 minutes has over 21,000 frames to be analyzed. Automating the process is crucial to allow interaction research to proceed. Research in object recognition over the last decade now allows eye-movement data to be analyzed automatically to determine what a subject is looking at and for how long. I will describe my research in which I developed a pipeline to help researchers analyze interaction data including eye and hand. Inspired by a semi-automated pipeline for analyzing eye tracking data, I have created a pipeline for analyzing hand grasp along with gaze. Putting both pipelines together can help researchers analyze interaction data. The hand-grasp pipeline detects skin to locate the hands, then determines what object (if any) the hand is over, and where the thumbs/fingers occluded that object. I also compare identification with recognition throughout the pipeline. The current pipeline operates on independent frames; future work will extend the pipeline to take advantage of the dynamics of natural interactions

    Fairness in Machine Learning: A Survey

    Full text link
    As Machine Learning technologies become increasingly used in contexts that affect citizens, companies as well as researchers need to be confident that their application of these methods will not have unexpected social implications, such as bias towards gender, ethnicity, and/or people with disabilities. There is significant literature on approaches to mitigate bias and promote fairness, yet the area is complex and hard to penetrate for newcomers to the domain. This article seeks to provide an overview of the different schools of thought and approaches to mitigating (social) biases and increase fairness in the Machine Learning literature. It organises approaches into the widely accepted framework of pre-processing, in-processing, and post-processing methods, subcategorizing into a further 11 method areas. Although much of the literature emphasizes binary classification, a discussion of fairness in regression, recommender systems, unsupervised learning, and natural language processing is also provided along with a selection of currently available open source libraries. The article concludes by summarising open challenges articulated as four dilemmas for fairness research

    Automatic extraction of robotic surgery actions from text and kinematic data

    Get PDF
    The latest generation of robotic systems is becoming increasingly autonomous due to technological advancements and artificial intelligence. The medical field, particularly surgery, is also interested in these technologies because automation would benefit surgeons and patients. While the research community is active in this direction, commercial surgical robots do not currently operate autonomously due to the risks involved in dealing with human patients: it is still considered safer to rely on human surgeons' intelligence for decision-making issues. This means that robots must possess human-like intelligence, including various reasoning capabilities and extensive knowledge, to become more autonomous and credible. As demonstrated by current research in the field, indeed, one of the most critical aspects in developing autonomous systems is the acquisition and management of knowledge. In particular, a surgical robot must base its actions on solid procedural surgical knowledge to operate autonomously, safely, and expertly. This thesis investigates different possibilities for automatically extracting and managing knowledge from text and kinematic data. In the first part, we investigated the possibility of extracting procedural surgical knowledge from real intervention descriptions available in textbooks and academic papers on the robotic-surgical domains, by exploiting Transformer-based pre-trained language models. In particular, we released SurgicBERTa, a RoBERTa-based pre-trained language model for surgical literature understanding. It has been used to detect procedural sentences in books and extract procedural elements from them. Then, with some use cases, we explored the possibilities of translating written instructions into logical rules usable for robotic planning. Since not all the knowledge required for automatizing a procedure is written in texts, we introduce the concept of surgical commonsense, showing how it relates to different autonomy levels. In the second part of the thesis, we analyzed surgical procedures from a lower granularity level, showing how each surgical gesture is associated with a given combination of kinematic data

    Histopathological image analysis : a review

    Get PDF
    Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe

    Machine learning methods for discriminating natural targets in seabed imagery

    Get PDF
    The research in this thesis concerns feature-based machine learning processes and methods for discriminating qualitative natural targets in seabed imagery. The applications considered, typically involve time-consuming manual processing stages in an industrial setting. An aim of the research is to facilitate a means of assisting human analysts by expediting the tedious interpretative tasks, using machine methods. Some novel approaches are devised and investigated for solving the application problems. These investigations are compartmentalised in four coherent case studies linked by common underlying technical themes and methods. The first study addresses pockmark discrimination in a digital bathymetry model. Manual identification and mapping of even a relatively small number of these landform objects is an expensive process. A novel, supervised machine learning approach to automating the task is presented. The process maps the boundaries of ≈ 2000 pockmarks in seconds - a task that would take days for a human analyst to complete. The second case study investigates different feature creation methods for automatically discriminating sidescan sonar image textures characteristic of Sabellaria spinulosa colonisation. Results from a comparison of several textural feature creation methods on sonar waterfall imagery show that Gabor filter banks yield some of the best results. A further empirical investigation into the filter bank features created on sonar mosaic imagery leads to the identification of a useful configuration and filter parameter ranges for discriminating the target textures in the imagery. Feature saliency estimation is a vital stage in the machine process. Case study three concerns distance measures for the evaluation and ranking of features on sonar imagery. Two novel consensus methods for creating a more robust ranking are proposed. Experimental results show that the consensus methods can improve robustness over a range of feature parameterisations and various seabed texture classification tasks. The final case study is more qualitative in nature and brings together a number of ideas, applied to the classification of target regions in real-world sonar mosaic imagery. A number of technical challenges arose and these were surmounted by devising a novel, hybrid unsupervised method. This fully automated machine approach was compared with a supervised approach in an application to the problem of image-based sediment type discrimination. The hybrid unsupervised method produces a plausible class map in a few minutes of processing time. It is concluded that the versatile, novel process should be generalisable to the discrimination of other subjective natural targets in real-world seabed imagery, such as Sabellaria textures and pockmarks (with appropriate features and feature tuning.) Further, the full automation of pockmark and Sabellaria discrimination is feasible within this framework
    • …
    corecore