344 research outputs found

    Neural Generative Question Answering

    Full text link
    This paper presents an end-to-end neural network model, named Neural Generative Question Answering (GENQA), that can generate answers to simple factoid questions, based on the facts in a knowledge-base. More specifically, the model is built on the encoder-decoder framework for sequence-to-sequence learning, while equipped with the ability to enquire the knowledge-base, and is trained on a corpus of question-answer pairs, with their associated triples in the knowledge-base. Empirical study shows the proposed model can effectively deal with the variations of questions and answers, and generate right and natural answers by referring to the facts in the knowledge-base. The experiment on question answering demonstrates that the proposed model can outperform an embedding-based QA model as well as a neural dialogue model trained on the same data.Comment: Accepted by IJCAI 201

    Enhancing natural language understanding using meaning representation and deep learning

    Get PDF
    Natural Language Understanding (NLU) is one of the complex tasks in artificial intelligence. Machine learning was introduced to address the complex and dynamic nature of natural language. Deep learning gained popularity within the NLU community due to its capability of learning features directly from data, as well as learning from the dynamic nature of natural language. Furthermore, deep learning has shown to be able to learn the hidden feature(s) automatically and outperform most of the other machine learning approaches for NLU. Deep learning models require natural language inputs to be converted to vectors (word embedding). Word2Vec and GloVe are word embeddings which are designed to capture the analogy context-based statistics and provide lexical relations on words. Using the context-based statistical approach does not capture the prior knowledge required to understand language combined with words. Although a deep learning model receives word embedding, language understanding requires Reasoning, Attention and Memory (RAM). RAM are key factors in understanding language. Current deep learning models focus either on reasoning, attention or memory. In order to properly understand a language however, all three factors of RAM should be considered. Also, a language normally has a long sequence. This long sequence creates dependencies which are required in order to understand a language. However, current deep learning models, which are developed to hold longer sequences, either forget or get affected by the vanishing or exploding gradient descent. In this thesis, these three main areas are of focus. A word embedding technique, which integrates analogy context-based statistical and semantic relationships, as well as extracts from a knowledge base to hold enhanced meaning representation, is introduced. Also, a Long Short-Term Reinforced Memory (LSTRM) network is introduced. This addresses RAM and is validated by testing on question answering data sets which require RAM. Finally, a Long Term Memory Network (LTM) is introduced to address language modelling. Good language modelling requires learning from long sequences. Therefore, this thesis demonstrates that integrating semantic knowledge and a knowledge base generates enhanced meaning and deep learning models that are capable of achieving RAM and long-term dependencies so as to improve the capability of NLU

    Graph Neural Networks with Generated Parameters for Relation Extraction

    Full text link
    Recently, progress has been made towards improving relational reasoning in machine learning field. Among existing models, graph neural networks (GNNs) is one of the most effective approaches for multi-hop relational reasoning. In fact, multi-hop relational reasoning is indispensable in many natural language processing tasks such as relation extraction. In this paper, we propose to generate the parameters of graph neural networks (GP-GNNs) according to natural language sentences, which enables GNNs to process relational reasoning on unstructured text inputs. We verify GP-GNNs in relation extraction from text. Experimental results on a human-annotated dataset and two distantly supervised datasets show that our model achieves significant improvements compared to baselines. We also perform a qualitative analysis to demonstrate that our model could discover more accurate relations by multi-hop relational reasoning

    Hierarchical Losses and New Resources for Fine-grained Entity Typing and Linking

    Full text link
    Extraction from raw text to a knowledge base of entities and fine-grained types is often cast as prediction into a flat set of entity and type labels, neglecting the rich hierarchies over types and entities contained in curated ontologies. Previous attempts to incorporate hierarchical structure have yielded little benefit and are restricted to shallow ontologies. This paper presents new methods using real and complex bilinear mappings for integrating hierarchical information, yielding substantial improvement over flat predictions in entity linking and fine-grained entity typing, and achieving new state-of-the-art results for end-to-end models on the benchmark FIGER dataset. We also present two new human-annotated datasets containing wide and deep hierarchies which we will release to the community to encourage further research in this direction: MedMentions, a collection of PubMed abstracts in which 246k mentions have been mapped to the massive UMLS ontology; and TypeNet, which aligns Freebase types with the WordNet hierarchy to obtain nearly 2k entity types. In experiments on all three datasets we show substantial gains from hierarchy-aware training.Comment: ACL 201

    Generating Factoid Questions With Recurrent Neural Networks: The 30M Factoid Question-Answer Corpus

    Full text link
    Over the past decade, large-scale supervised learning corpora have enabled machine learning researchers to make substantial advances. However, to this date, there are no large-scale question-answer corpora available. In this paper we present the 30M Factoid Question-Answer Corpus, an enormous question answer pair corpus produced by applying a novel neural network architecture on the knowledge base Freebase to transduce facts into natural language questions. The produced question answer pairs are evaluated both by human evaluators and using automatic evaluation metrics, including well-established machine translation and sentence similarity metrics. Across all evaluation criteria the question-generation model outperforms the competing template-based baseline. Furthermore, when presented to human evaluators, the generated questions appear comparable in quality to real human-generated questions.Comment: 13 pages, 1 figure, 7 table

    Globally Normalized Reader

    Full text link
    Rapid progress has been made towards question answering (QA) systems that can extract answers from text. Existing neural approaches make use of expensive bi-directional attention mechanisms or score all possible answer spans, limiting scalability. We propose instead to cast extractive QA as an iterative search problem: select the answer's sentence, start word, and end word. This representation reduces the space of each search step and allows computation to be conditionally allocated to promising search paths. We show that globally normalizing the decision process and back-propagating through beam search makes this representation viable and learning efficient. We empirically demonstrate the benefits of this approach using our model, Globally Normalized Reader (GNR), which achieves the second highest single model performance on the Stanford Question Answering Dataset (68.4 EM, 76.21 F1 dev) and is 24.7x faster than bi-attention-flow. We also introduce a data-augmentation method to produce semantically valid examples by aligning named entities to a knowledge base and swapping them with new entities of the same type. This method improves the performance of all models considered in this work and is of independent interest for a variety of NLP tasks.Comment: Presented at EMNLP 201

    Complex Knowledge Base Question Answering: A Survey

    Full text link
    Knowledge base question answering (KBQA) aims to answer a question over a knowledge base (KB). Early studies mainly focused on answering simple questions over KBs and achieved great success. However, their performance on complex questions is still far from satisfactory. Therefore, in recent years, researchers propose a large number of novel methods, which looked into the challenges of answering complex questions. In this survey, we review recent advances on KBQA with the focus on solving complex questions, which usually contain multiple subjects, express compound relations, or involve numerical operations. In detail, we begin with introducing the complex KBQA task and relevant background. Then, we describe benchmark datasets for complex KBQA task and introduce the construction process of these datasets. Next, we present two mainstream categories of methods for complex KBQA, namely semantic parsing-based (SP-based) methods and information retrieval-based (IR-based) methods. Specifically, we illustrate their procedures with flow designs and discuss their major differences and similarities. After that, we summarize the challenges that these two categories of methods encounter when answering complex questions, and explicate advanced solutions and techniques used in existing work. Finally, we conclude and discuss several promising directions related to complex KBQA for future research.Comment: 20 pages, 4 tables, 7 figures. arXiv admin note: text overlap with arXiv:2105.1164

    Visual question answering using external knowledge

    Get PDF
    Accurately answering a question about a given image requires combining observations with general knowledge. While this is effortless for humans, reasoning with general knowledge remains an algorithmic challenge. To advance research in this direction, a novel `fact-based' visual question answering (FVQA) task has been introduced recently along with a large set of curated facts which link two entities, i.e., two possible answers, via a relation. Given a question-image pair, keyword matching techniques have been employed to successively reduce the large set of facts and were shown to yield compelling results despite being vulnerable to misconceptions due to synonyms and homographs. To overcome these shortcomings, we introduce two new approaches in this work. We develop a learning-based approach which goes straight to the facts via a learned embedding space. We demonstrate state-of-the-art results on the challenging recently introduced factbased visual question answering dataset, outperforming competing methods by more than 5%. Upon further analysis, we observe that a successive process which considers one fact at a time to form a local decision is sub-optimal. To counter this, in our second approach we develop an entity graph and use a graph convolutional network to `reason' about the correct answer by jointly considering all entities. We show on the FVQA dataset that this leads to an improvement in accuracy of around 7% compared to the state-of-the-art
    corecore