2,243 research outputs found

    Question Answering by Reasoning Across Documents with Graph Convolutional Networks

    Get PDF
    Most research in reading comprehension has focused on answering questions based on individual documents or even single paragraphs. We introduce a neural model which integrates and reasons relying on information spread within documents and across multiple documents. We frame it as an inference problem on a graph. Mentions of entities are nodes of this graph while edges encode relations between different mentions (e.g., within- and cross-document co-reference). Graph convolutional networks (GCNs) are applied to these graphs and trained to perform multi-step reasoning. Our Entity-GCN method is scalable and compact, and it achieves state-of-the-art results on a multi-document question answering dataset, WikiHop (Welbl et al., 2018).Comment: To appear in Conference of the North American Chapter of the Association for Computational Linguistics (NAACL), 2019. 13 pages, 3 figures, 6 table

    Fine-tuning Multi-hop Question Answering with Hierarchical Graph Network

    Full text link
    In this paper, we present a two stage model for multi-hop question answering. The first stage is a hierarchical graph network, which is used to reason over multi-hop question and is capable to capture different levels of granularity using the nature structure(i.e., paragraphs, questions, sentences and entities) of documents. The reasoning process is convert to node classify task(i.e., paragraph nodes and sentences nodes). The second stage is a language model fine-tuning task. In a word, stage one use graph neural network to select and concatenate support sentences as one paragraph, and stage two find the answer span in language model fine-tuning paradigm.Comment: the experience result is not as good as I excep

    Visual Entailment: A Novel Task for Fine-Grained Image Understanding

    Get PDF
    Existing visual reasoning datasets such as Visual Question Answering (VQA), often suffer from biases conditioned on the question, image or answer distributions. The recently proposed CLEVR dataset addresses these limitations and requires fine-grained reasoning but the dataset is synthetic and consists of similar objects and sentence structures across the dataset. In this paper, we introduce a new inference task, Visual Entailment (VE) - consisting of image-sentence pairs whereby a premise is defined by an image, rather than a natural language sentence as in traditional Textual Entailment tasks. The goal of a trained VE model is to predict whether the image semantically entails the text. To realize this task, we build a dataset SNLI-VE based on the Stanford Natural Language Inference corpus and Flickr30k dataset. We evaluate various existing VQA baselines and build a model called Explainable Visual Entailment (EVE) system to address the VE task. EVE achieves up to 71% accuracy and outperforms several other state-of-the-art VQA based models. Finally, we demonstrate the explainability of EVE through cross-modal attention visualizations. The SNLI-VE dataset is publicly available at https://github.com/ necla-ml/SNLI-VE
    • …
    corecore