6,324 research outputs found

    Explicit Reasoning over End-to-End Neural Architectures for Visual Question Answering

    Full text link
    Many vision and language tasks require commonsense reasoning beyond data-driven image and natural language processing. Here we adopt Visual Question Answering (VQA) as an example task, where a system is expected to answer a question in natural language about an image. Current state-of-the-art systems attempted to solve the task using deep neural architectures and achieved promising performance. However, the resulting systems are generally opaque and they struggle in understanding questions for which extra knowledge is required. In this paper, we present an explicit reasoning layer on top of a set of penultimate neural network based systems. The reasoning layer enables reasoning and answering questions where additional knowledge is required, and at the same time provides an interpretable interface to the end users. Specifically, the reasoning layer adopts a Probabilistic Soft Logic (PSL) based engine to reason over a basket of inputs: visual relations, the semantic parse of the question, and background ontological knowledge from word2vec and ConceptNet. Experimental analysis of the answers and the key evidential predicates generated on the VQA dataset validate our approach.Comment: 9 pages, 3 figures, AAAI 201

    When Are Tree Structures Necessary for Deep Learning of Representations?

    Full text link
    Recursive neural models, which use syntactic parse trees to recursively generate representations bottom-up, are a popular architecture. But there have not been rigorous evaluations showing for exactly which tasks this syntax-based method is appropriate. In this paper we benchmark {\bf recursive} neural models against sequential {\bf recurrent} neural models (simple recurrent and LSTM models), enforcing apples-to-apples comparison as much as possible. We investigate 4 tasks: (1) sentiment classification at the sentence level and phrase level; (2) matching questions to answer-phrases; (3) discourse parsing; (4) semantic relation extraction (e.g., {\em component-whole} between nouns). Our goal is to understand better when, and why, recursive models can outperform simpler models. We find that recursive models help mainly on tasks (like semantic relation extraction) that require associating headwords across a long distance, particularly on very long sequences. We then introduce a method for allowing recurrent models to achieve similar performance: breaking long sentences into clause-like units at punctuation and processing them separately before combining. Our results thus help understand the limitations of both classes of models, and suggest directions for improving recurrent models
    • …
    corecore