4 research outputs found

    An Ontology-Based Interpretable Fuzzy Decision Support System for Diabetes Diagnosis

    Get PDF
    Diabetes is a serious chronic disease. The importance of clinical decision support systems (CDSSs) to diagnose diabetes has led to extensive research efforts to improve the accuracy, applicability, interpretability, and interoperability of these systems. However, this problem continues to require optimization. Fuzzy rule-based systems are suitable for the medical domain, where interpretability is a main concern. The medical domain is data-intensive, and using electronic health record data to build the FRBS knowledge base and fuzzy sets is critical. Multiple variables are frequently required to determine a correct and personalized diagnosis, which usually makes it difficult to arrive at accurate and timely decisions. In this paper, we propose and implement a new semantically interpretable FRBS framework for diabetes diagnosis. The framework uses multiple aspects of knowledge-fuzzy inference, ontology reasoning, and a fuzzy analytical hierarchy process (FAHP) to provide a more intuitive and accurate design. First, we build a two-layered hierarchical and interpretable FRBS; then, we improve this by integrating an ontology reasoning process based on SNOMED CT standard ontology. We incorporate FAHP to determine the relative medical importance of each sub-FRBS. The proposed system offers numerous unique and critical improvements regarding the implementation of an accurate, dynamic, semantically intelligent, and interpretable CDSS. The designed system considers the ontology semantic similarity of diabetes complications and symptoms concepts in the fuzzy rules' evaluation process. The framework was tested using a real data set, and the results indicate how the proposed system helps physicians and patients to accurately diagnose diabetes mellitusThis work was supported by National Research Foundation of Korea-Grant funded by the Korean Government (Ministry of Science, ICT and Future Planning)-NRF-2017R1A2B2012337)S

    A Survey of Fuzzy Systems Software: Taxonomy, Current Research Trends, and Prospects

    Get PDF
    Fuzzy systems have been used widely thanks to their ability to successfully solve a wide range of problems in different application fields. However, their replication and application require a high level of knowledge and experience. Furthermore, few researchers publish the software and/or source code associated with their proposals, which is a major obstacle to scientific progress in other disciplines and in industry. In recent years, most fuzzy system software has been developed in order to facilitate the use of fuzzy systems. Some software is commercially distributed, but most software is available as free and open-source software, reducing such obstacles and providing many advantages: quicker detection of errors, innovative applications, faster adoption of fuzzy systems, etc. In this paper, we present an overview of freely available and open-source fuzzy systems software in order to provide a well-established framework that helps researchers to find existing proposals easily and to develop well-founded future work. To accomplish this, we propose a two-level taxonomy, and we describe the main contributions related to each field. Moreover, we provide a snapshot of the status of the publications in this field according to the ISI Web of Knowledge. Finally, some considerations regarding recent trends and potential research directions are presentedThis work was supported in part by the Spanish Ministry of Economy and Competitiveness under Grants TIN2014-56633-C3-3-R and TIN2014-57251-P, the Andalusian Government under Grants P10-TIC-6858 and P11-TIC-7765, and the GENIL program of the CEI BioTIC GRANADA under Grant PYR-2014-2S
    corecore