3,180 research outputs found

    Survey of time series database technology

    Get PDF
    This report has been prepared by Epimorphics Ltd. as part of the ENTRAIN project (NERC grant number NE/S016244/1) which is a feasibility project within the “NERC Constructing a Digital Environment Strategic Priorities Fund Programme”. The Centre for Ecology and Hydrology(CEH) is a research organisation focusing on land and freshwater ecosystems and their interaction with the atmosphere. The organization manages a number of sensor networks to monitor the environment, and also handles large databases of 3rd party data (e.g. river flows measured by the Environment Agency and equivalents in Scotland and Wales). Data from these networks is stored and made available to users, both internally (through direct query of databases, and externally via web-services). The ENTRAIN project aims to address a number of issues in relation to sensor data storage and integration, using a number of hydrological datasets to help define use cases: COSMOS-UK (a network of ~50 sites measuring soil moisture and meteorological variables at 1-30 minute resolutions); the CEH Greenhouse Gas (GHG) network (~15 sites measuring sub-second fluxes of gases and moisture, subsequently processed up to 30-minute aggregations); the Thames Initiative (a database of weekly and hourly water quality samples from sites around the Thames basin). In addition this report considers the UK National River Flow Archive, a database of daily river flows and catchment rainfall derived by regional environmental agencies from 15-minute measurements of river levels and flows. CEH commissioned this report to survey alternative technologies for storing sensor data that scale better, could manage larger data volumes more easily and less expensively, and that might be readily deployed on different infrastructures

    Time Series Management Systems:A Survey

    Get PDF
    The collection of time series data increases as more monitoring and automation are being deployed. These deployments range in scale from an Internet of things (IoT) device located in a household to enormous distributed Cyber-Physical Systems (CPSs) producing large volumes of data at high velocity. To store and analyze these vast amounts of data, specialized Time Series Management Systems (TSMSs) have been developed to overcome the limitations of general purpose Database Management Systems (DBMSs) for times series management. In this paper, we present a thorough analysis and classification of TSMSs developed through academic or industrial research and documented through publications. Our classification is organized into categories based on the architectures observed during our analysis. In addition, we provide an overview of each system with a focus on the motivational use case that drove the development of the system, the functionality for storage and querying of time series a system implements, the components the system is composed of, and the capabilities of each system with regard to Stream Processing and Approximate Query Processing (AQP). Last, we provide a summary of research directions proposed by other researchers in the field and present our vision for a next generation TSMS.Comment: 20 Pages, 15 Figures, 2 Tables, Accepted for publication in IEEE TKD
    • …
    corecore