823 research outputs found

    Secure Data Management and Transmission Infrastructure for the Future Smart Grid

    Get PDF
    Power grid has played a crucial role since its inception in the Industrial Age. It has evolved from a wide network supplying energy for incorporated multiple areas to the largest cyber-physical system. Its security and reliability are crucial to any country’s economy and stability [1]. With the emergence of the new technologies and the growing pressure of the global warming, the aging power grid can no longer meet the requirements of the modern industry, which leads to the proposal of ‘smart grid’. In smart grid, both electricity and control information communicate in a massively distributed power network. It is essential for smart grid to deliver real-time data by communication network. By using smart meter, AMI can measure energy consumption, monitor loads, collect data and forward information to collectors. Smart grid is an intelligent network consists of many technologies in not only power but also information, telecommunications and control. The most famous structure of smart grid is the three-layer structure. It divides smart grid into three different layers, each layer has its own duty. All these three layers work together, providing us a smart grid that monitor and optimize the operations of all functional units from power generation to all the end-customers [2]. To enhance the security level of future smart grid, deploying a high secure level data transmission scheme on critical nodes is an effective and practical approach. A critical node is a communication node in a cyber-physical network which can be developed to meet certain requirements. It also has firewalls and capability of intrusion detection, so it is useful for a time-critical network system, in other words, it is suitable for future smart grid. The deployment of such a scheme can be tricky regarding to different network topologies. A simple and general way is to install it on every node in the network, that is to say all nodes in this network are critical nodes, but this way takes time, energy and money. Obviously, it is not the best way to do so. Thus, we propose a multi-objective evolutionary algorithm for the searching of critical nodes. A new scheme should be proposed for smart grid. Also, an optimal planning in power grid for embedding large system can effectively ensure every power station and substation to operate safely and detect anomalies in time. Using such a new method is a reliable method to meet increasing security challenges. The evolutionary frame helps in getting optimum without calculating the gradient of the objective function. In the meanwhile, a means of decomposition is useful for exploring solutions evenly in decision space. Furthermore, constraints handling technologies can place critical nodes on optimal locations so as to enhance system security even with several constraints of limited resources and/or hardware. The high-quality experimental results have validated the efficiency and applicability of the proposed approach. It has good reason to believe that the new algorithm has a promising space over the real-world multi-objective optimization problems extracted from power grid security domain. In this thesis, a cloud-based information infrastructure is proposed to deal with the big data storage and computation problems for the future smart grid, some challenges and limitations are addressed, and a new secure data management and transmission strategy regarding increasing security challenges of future smart grid are given as well

    Secure Data Management and Transmission Infrastructure for the Future Smart Grid

    Get PDF
    Power grid has played a crucial role since its inception in the Industrial Age. It has evolved from a wide network supplying energy for incorporated multiple areas to the largest cyber-physical system. Its security and reliability are crucial to any country’s economy and stability [1]. With the emergence of the new technologies and the growing pressure of the global warming, the aging power grid can no longer meet the requirements of the modern industry, which leads to the proposal of ‘smart grid’. In smart grid, both electricity and control information communicate in a massively distributed power network. It is essential for smart grid to deliver real-time data by communication network. By using smart meter, AMI can measure energy consumption, monitor loads, collect data and forward information to collectors. Smart grid is an intelligent network consists of many technologies in not only power but also information, telecommunications and control. The most famous structure of smart grid is the three-layer structure. It divides smart grid into three different layers, each layer has its own duty. All these three layers work together, providing us a smart grid that monitor and optimize the operations of all functional units from power generation to all the end-customers [2]. To enhance the security level of future smart grid, deploying a high secure level data transmission scheme on critical nodes is an effective and practical approach. A critical node is a communication node in a cyber-physical network which can be developed to meet certain requirements. It also has firewalls and capability of intrusion detection, so it is useful for a time-critical network system, in other words, it is suitable for future smart grid. The deployment of such a scheme can be tricky regarding to different network topologies. A simple and general way is to install it on every node in the network, that is to say all nodes in this network are critical nodes, but this way takes time, energy and money. Obviously, it is not the best way to do so. Thus, we propose a multi-objective evolutionary algorithm for the searching of critical nodes. A new scheme should be proposed for smart grid. Also, an optimal planning in power grid for embedding large system can effectively ensure every power station and substation to operate safely and detect anomalies in time. Using such a new method is a reliable method to meet increasing security challenges. The evolutionary frame helps in getting optimum without calculating the gradient of the objective function. In the meanwhile, a means of decomposition is useful for exploring solutions evenly in decision space. Furthermore, constraints handling technologies can place critical nodes on optimal locations so as to enhance system security even with several constraints of limited resources and/or hardware. The high-quality experimental results have validated the efficiency and applicability of the proposed approach. It has good reason to believe that the new algorithm has a promising space over the real-world multi-objective optimization problems extracted from power grid security domain. In this thesis, a cloud-based information infrastructure is proposed to deal with the big data storage and computation problems for the future smart grid, some challenges and limitations are addressed, and a new secure data management and transmission strategy regarding increasing security challenges of future smart grid are given as well

    Data query mechanism based on hash computing power of blockchain in internet of things

    Get PDF
    Funding: This work is supported by the NSFC (61772280, 61772454, 61811530332, 61811540410), the PAPD fund from NUIST. This work was funded by the Researchers Supporting Project No. (RSP-2019/102) King Saud University, Riyadh, Saudi Arabia. Jin Wang and Osama Alfarraj are the corresponding authors. Acknowledgments: We thank Researchers Supporting Project No. (RSP-2019/102) King Saud University, Riyadh, Saudi Arabia for funding this paper. Author Contributions: Y.R., F.Z. and O.A. conceived the mechanism design and wrote the paper, P.K.S. built the models. T.W. and A.T. developed the mechanism, J.W. and O.A. revised the manuscript. All authors have read and agreed to the published version of the manuscript.Peer reviewedPublisher PD

    Private and Flexible Proximity Detection in Mobile Social Networks

    Get PDF

    Peer-to-Peer EnergyTrade: A Distributed Private Energy Trading Platform

    Full text link
    Blockchain is increasingly being used as a distributed, anonymous, trustless framework for energy trading in smart grids. However, most of the existing solutions suffer from reliance on Trusted Third Parties (TTP), lack of privacy, and traffic and processing overheads. In our previous work, we have proposed a Secure Private Blockchain-based framework (SPB) for energy trading to address the aforementioned challenges. In this paper, we present a proof-on-concept implementation of SPB on the Ethereum private network to demonstrates SPB's applicability for energy trading. We benchmark SPB's performance against the relevant state-of-the-art. The implementation results demonstrate that SPB incurs lower overheads and monetary cost for end users to trade energy compared to existing solutions

    Homomorphic encryption and database query privacy

    Get PDF
    Homomorphic encryption is a particular type of encryption method that enables computing over encrypted data. This has a wide range of real world ramifications such as being able to blindly compute a search result sent to a remote server without revealing its content. In the first part of this thesis, we discuss how database search queries can be made secure using a homomorphic encryption scheme based on the ideas of Gahi et al. Gahi’s method is based on the integer-based fully homomorphic encryption scheme proposed by Dijk et al. We propose a new database search scheme called the Homomorphic Query Processing Scheme, which can be used with the ring-based fully homomorphic encryption scheme proposed by Braserski. In the second part of this thesis, we discuss the cybersecurity of the smart electric grid. Specifically, we use the Homomorphic Query Processing scheme to construct a keyword search technique in the smart grid. Our work is based on the Public Key Encryption with Keyword Search (PEKS) method introduced by Boneh et al. and a Multi-Key Homomorphic Encryption scheme proposed by L´opez-Alt et al. A summary of the results of this thesis (specifically the Homomorphic Query Processing Scheme) is published at the 14th Canadian Workshop on Information Theory (CWIT)

    PrivHome: Privacy-preserving authenticated communication in smart home environment

    Get PDF
    A smart home enables users to access devices such as lighting, HVAC, temperature sensors, and surveillance camera. It provides a more convenient and safe living environment for users. Security and privacy, however, is a key concern since information collected from these devices are normally communicated to the user through an open network (i. e. Internet) or system provided by the service provider. The service provider may store and have access to these information. Emerging smart home hubs such as Samsung SmartThings and Google Home are also capable of collecting and storing these information. Leakage and unauthorized access to the information can have serious consequences. For example, the mere timing of switching on/off of an HVAC unit may reveal the presence or absence of the home owner. Similarly, leakage or tampering of critical medical information collected from wearable body sensors can have serious consequences. Encrypting these information will address the issues, but it also reduces utility since queries is no longer straightforward. Therefore, we propose a privacy-preserving scheme, PrivHome. It supports authentication, secure data storage and query for smart home systems. PrivHome provides data confidentiality as well as entity and data authentication to prevent an outsider from learning or modifying the data communicated between the devices, service provider, gateway, and the user. It further provides privacy-preserving queries in such a way that the service provider, and the gateway does not learn content of the data. To the best of our knowledge, privacy-preserving queries for smart home systems has not been considered before. Under our scheme is a new, lightweight entity and key-exchange protocol, and an efficient searchable encryption protocol. Our scheme is practical as both protocols are based solely on symmetric cryptographic techniques. We demonstrate efficiency and effectiveness of our scheme based on experimental and simulation results, as well as comparisons to existing smart home security protocols
    • …
    corecore