840 research outputs found

    Natural language querying for video databases

    Get PDF
    Cataloged from PDF version of article.The video databases have become popular in various areas due to the recent advances in technology. Video archive systems need user-friendly interfaces to retrieve video frames. In this paper, a user interface based on natural language processing (NLP) to a video database system is described. The video database is based on a content-based spatio-temporal video data model. The data model is focused on the semantic content which includes objects, activities, and spatial properties of objects. Spatio-temporal relationships between video objects and also trajectories of moving objects can be queried with this data model. In this video database system, a natural language interface enables flexible querying. The queries, which are given as English sentences, are parsed using link parser. The semantic representations of the queries are extracted from their syntactic structures using information extraction techniques. The extracted semantic representations are used to call the related parts of the underlying video database system to return the results of the queries. Not only exact matches but similar objects and activities are also returned from the database with the help of the conceptual ontology module. This module is implemented using a distance-based method of semantic similarity search on the semantic domain-independent ontology, WordNet. (C) 2008 Elsevier Inc. All rights reserved

    Geographical Counterpoint to Choreographic Information based on Approaches in GIScience and Visualization

    Get PDF
    This study provides geographical counterpoint to existing knowledge of a dance piece through approaches from GIScience and visualization by focusing on spatio-temporal movement of dancers in a large dataset of the dance. The goal of this study is to introduce a new application to bridging art and science in the domain of dance and geography disciplines. The study utilizes existing methodologies in GIScience, including exploratory spatial data analysis (ESDA), spatial analysis, Relative Motion (REMO) analysis, and Qualitative Trajectory Calculus (QTC) analysis for the reasoning of the dance data. The results of the study demonstrate the following. First, spatio-temporal information in the dance can be better understood by using approaches in geography, including ESDA, spatial analysis, REMO analysis, QTC analysis, and visualization. Second, the REMO analysis measured relative azimuth, speed, and δ-speed of the dancers per space and time and intuitively visualized their interactions. Third, the QTC analysis showed an example of measuring similarity and difference between repetitive movements of the dancers. The study exhibits how approaches of GIScience in geography could contribute to finding new knowledge of choreographic information that has been, in general, hard to recognize through other disciplines such as dance and statistics

    TEMPOS: A Platform for Developing Temporal Applications on Top of Object DBMS

    Get PDF
    This paper presents TEMPOS: a set of models and languages supporting the manipulation of temporal data on top of object DBMS. The proposed models exploit object-oriented technology to meet some important, yet traditionally neglected design criteria related to legacy code migration and representation independence. Two complementary ways for accessing temporal data are offered: a query language and a visual browser. The query language, namely TempOQL, is an extension of OQL supporting the manipulation of histories regardless of their representations, through fully composable functional operators. The visual browser offers operators that facilitate several time-related interactive navigation tasks, such as studying a snapshot of a collection of objects at a given instant, or detecting and examining changes within temporal attributes and relationships. TEMPOS models and languages have been formalized both at the syntactical and the semantical level and have been implemented on top of an object DBMS. The suitability of the proposals with regard to applications' requirements has been validated through concrete case studies

    Natural language querying for video databases

    Get PDF
    The video databases have become popular in various areas due to the recent advances in technology. Video archive systems need user-friendly interfaces to retrieve video frames. In this paper, a user interface based on natural language processing (NLP) to a video database system is described. The video database is based on a content-based spatio-temporal video data model. The data model is focused on the semantic content which includes objects, activities, and spatial properties of objects. Spatio-temporal relationships between video objects and also trajectories of moving objects can be queried with this data model. In this video database system, a natural language interface enables flexible querying. The queries, which are given as English sentences, are parsed using link parser. The semantic representations of the queries are extracted from their syntactic structures using information extraction techniques. The extracted semantic representations are used to call the related parts of the underlying video database system to return the results of the queries. Not only exact matches but similar objects and activities are also returned from the database with the help of the conceptual ontology module. This module is implemented using a distance-based method of semantic similarity search on the semantic domain-independent ontology, WordNet. © 2008 Elsevier Inc. All rights reserved

    Multi-scale window specification over streaming trajectories

    Get PDF
    Enormous amounts of positional information are collected by monitoring applications in domains such as fleet management cargo transport wildlife protection etc. With the advent of modern location-based services processing such data mostly focuses on providing real-time response to a variety of user requests in continuous and scalable fashion. An important class of such queries concerns evolving trajectories that continuously trace the streaming locations of moving objects like GPS-equipped vehicles commodities with RFID\u27s people with smartphones etc. In this work we propose an advanced windowing operator that enables online incremental examination of recent motion paths at multiple resolutions for numerous point entities. When applied against incoming positions this window can abstract trajectories at coarser representations towards the past while retaining progressively finer features closer to the present. We explain the semantics of such multi-scale sliding windows through parameterized functions that reflect the sequential nature of trajectories and can effectively capture their spatiotemporal properties. Such window specification goes beyond its usual role for non-blocking processing of multiple concurrent queries. Actually it can offer concrete subsequences from each trajectory thus preserving continuity in time and contiguity in space along the respective segments. Further we suggest language extensions in order to express characteristic spatiotemporal queries using windows. Finally we discuss algorithms for nested maintenance of multi-scale windows and evaluate their efficiency against streaming positional data offering empirical evidence of their benefits to online trajectory processing

    STV-based Video Feature Processing for Action Recognition

    Get PDF
    In comparison to still image-based processes, video features can provide rich and intuitive information about dynamic events occurred over a period of time, such as human actions, crowd behaviours, and other subject pattern changes. Although substantial progresses have been made in the last decade on image processing and seen its successful applications in face matching and object recognition, video-based event detection still remains one of the most difficult challenges in computer vision research due to its complex continuous or discrete input signals, arbitrary dynamic feature definitions, and the often ambiguous analytical methods. In this paper, a Spatio-Temporal Volume (STV) and region intersection (RI) based 3D shape-matching method has been proposed to facilitate the definition and recognition of human actions recorded in videos. The distinctive characteristics and the performance gain of the devised approach stemmed from a coefficient factor-boosted 3D region intersection and matching mechanism developed in this research. This paper also reported the investigation into techniques for efficient STV data filtering to reduce the amount of voxels (volumetric-pixels) that need to be processed in each operational cycle in the implemented system. The encouraging features and improvements on the operational performance registered in the experiments have been discussed at the end

    Indexing Techniques for Image and Video Databases: an approach based on Animate Vision Paradigm

    Get PDF
    [ITALIANO]In questo lavoro di tesi vengono presentate e discusse delle innovative tecniche di indicizzazione per database video e di immagini basate sul paradigma della “Animate Vision” (Visione Animata). Da un lato, sarà mostrato come utilizzando, quali algoritmi di analisi di una data immagine, alcuni meccanismi di visione biologica, come i movimenti saccadici e le fissazioni dell'occhio umano, sia possibile ottenere un query processing in database di immagini più efficace ed efficiente. In particolare, verranno discussi, la metodologia grazie alla quale risulta possibile generare due sequenze di fissazioni, a partire rispettivamente, da un'immagine di query I_q ed una di test I_t del data set, e, come confrontare tali sequenze al fine di determinare una possibile misura della similarità (consistenza) tra le due immagini. Contemporaneamente, verrà discusso come tale approccio unito a tecniche classiche di clustering possa essere usato per scoprire le associazioni semantiche nascoste tra immagini, in termini di categorie, che, di contro, permettono un'automatica pre-classificazione (indicizzazione) delle immagini e possono essere usate per guidare e migliorare il processo di query. Saranno presentati, infine, dei risultati preliminari e l'approccio proposto sarà confrontato con le più recenti tecniche per il recupero di immagini descritte in letteratura. Dall'altro lato, sarà mostrato come utilizzando la precedente rappresentazione “foveata” di un'immagine, risulti possibile partizionare un video in shot. Più precisamente, il metodo per il rilevamento dei cambiamenti di shot si baserà sulla computazione, in ogni istante di tempo, della misura di consistenza tra le sequenze di fissazioni generate da un osservatore ideale che guarda il video. Lo schema proposto permette l'individuazione, attraverso l'utilizzo di un'unica tecnica anziché di più metodi dedicati, sia delle transizioni brusche sia di quelle graduali. Vengono infine mostrati i risultati ottenuti su varie tipologie di video e, come questi, validano l'approccio proposto. / [INGLESE]In this dissertation some novel indexing techniques for video and image database based on “Animate Vision” Paradigm are presented and discussed. From one hand, it will be shown how, by embedding within image inspection algorithms active mechanisms of biological vision such as saccadic eye movements and fixations, a more effective query processing in image database can be achieved. In particular, it will be discussed the way to generate two fixation sequences from a query image I_q and a test image I_t of the data set, respectively, and how to compare the two sequences in order to compute a possible similarity (consistency) measure between the two images. Meanwhile, it will be shown how the approach can be used with classical clustering techniques to discover and represent the hidden semantic associations among images, in terms of categories, which, in turn, allow an automatic pre-classification (indexing), and can be used to drive and improve the query processing. Eventually, preliminary results will be presented and the proposed approach compared with the most recent techniques for image retrieval described in the literature. From the other one, it will be discussed how by taking advantage of such foveated representation of an image, it is possible to partitioning of a video into shots. More precisely, the shot-change detection method will be based on the computation, at each time instant, of the consistency measure of the fixation sequences generated by an ideal observer looking at the video. The proposed scheme aims at detecting both abrupt and gradual transitions between shots using a single technique, rather than a set of dedicated methods. Results on videos of various content types are reported and validate the proposed approach
    corecore