96 research outputs found

    Expressiveness of Temporal Query Languages: On the Modelling of Intervals, Interval Relationships and States

    Get PDF
    Storing and retrieving time-related information are important, or even critical, tasks on many areas of Computer Science (CS) and in particular for Artificial Intelligence (AI). The expressive power of temporal databases/query languages has been studied from different perspectives, but the kind of temporal information they are able to store and retrieve is not always conveniently addressed. Here we assess a number of temporal query languages with respect to the modelling of time intervals, interval relationships and states, which can be thought of as the building blocks to represent and reason about a large and important class of historic information. To survey the facilities and issues which are particular to certain temporal query languages not only gives an idea about how useful they can be in particular contexts, but also gives an interesting insight in how these issues are, in many cases, ultimately inherent to the database paradigm. While in the area of AI declarative languages are usually the preferred choice, other areas of CS heavily rely on the extended relational paradigm. This paper, then, will be concerned with the representation of historic information in two well known temporal query languages: it Templog in the context of temporal deductive databases, and it TSQL2 in the context of temporal relational databases. We hope the results highlighted here will increase cross-fertilisation between different communities. This article can be related to recent publications drawing the attention towards the different approaches followed by the Databases and AI communities when using time-related concepts

    ON PERIODICITY IN TEMPORAL DATABASES

    Get PDF
    The issue of periodicity is generally understood to be a desirable property of temporal data that should be supported by temporal database models and their query languages. Nevertheless, there has so far not been any systematic examination of how to incorporate this concept into a temporal DBMS. In this paper we describe two concepts of periodicity, which we call strong periodicity and near periodicity, and discuss how they capture formally two of the intuitive meanings of this term. We formally compare the expressive power of these two concepts, relate them to existing temporal query languages, and show how they can be incorporated into temporal relational database query languages, such as the proposed temporal extension to SQL, in a clean and straightforward manner.Information Systems Working Papers Serie

    Extending a set-theoretic implementation of Montague Semantics to accommodate n-ary transitive verbs.

    Get PDF
    Natural-language querying of databases remains an important and challenging area. Many approaches have been proposed over many years yet none of them has provided a comprehensive fully-compositional denotational semantics for a large sub-set of natural language, even for querying first-order non-intentional, non-modal, relational databases. One approach, which has made significant progress, is that which is based on Montague Semantics. Various researchers have helped to develop this approach and have demonstrated its viability. However, none have yet shown how to accommodate transitive verbs of arity greater than two. Our thesis is that existing approaches to the implementation of Montague Semantics in modern functional programming languages can be extended to solve this problem. This thesis is proven through the development of a compositional semantics for n-ary transitive verbs (n ≥ 2) and implementation in the Miranda programming environment. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .R69. Source: Masters Abstracts International, Volume: 44-03, page: 1413. Thesis (M.Sc.)--University of Windsor (Canada), 2005

    On the Semantics of "Now" in Databases

    Get PDF
    While "now" is expressed in SQL as CURRENT-TIMESTAMP within queries, this value cannot be stored in the database. However, this notion of an ever-increasing current-time value has been reflected in some temporal data models by inclusion of database-resident variables, such as "now," "until-changed," "â," "@" and "-." Time variables are very desirable, but their use also leads to a new type of database, consisting of tuples with variables, termed a variable database. This paper proposes a framework for defining the semantics of the variable databases of temporal relational data models. A framework is presented because several reasonable meanings may be given to databases that use some of the specific temporal variables that have appeared in the literature. Using the framework, the paper defines a useful semantics for such databases. Because situations occur where the existing time variables are inadequate, two new types of modeling entities that address these shortcomings, timestamps which we call now-relative and now-relative indeterminate, are introduced and defined within the framework. Moreover, the paper provides a foundation, using algebraic bind operators, for the querying of variable databases via existing query languages. This transition to variable databases presented here requires minimal change to the query processor. Finally, to underline the practical feasibility of variable databases, we show that database variables can be precisely specified and efficiently implemented in conventional query languages, such as SQL, and in temporal query languages, such as TSQL2.Information Systems Working Papers Serie

    TEMPOS: A Platform for Developing Temporal Applications on Top of Object DBMS

    Get PDF
    This paper presents TEMPOS: a set of models and languages supporting the manipulation of temporal data on top of object DBMS. The proposed models exploit object-oriented technology to meet some important, yet traditionally neglected design criteria related to legacy code migration and representation independence. Two complementary ways for accessing temporal data are offered: a query language and a visual browser. The query language, namely TempOQL, is an extension of OQL supporting the manipulation of histories regardless of their representations, through fully composable functional operators. The visual browser offers operators that facilitate several time-related interactive navigation tasks, such as studying a snapshot of a collection of objects at a given instant, or detecting and examining changes within temporal attributes and relationships. TEMPOS models and languages have been formalized both at the syntactical and the semantical level and have been implemented on top of an object DBMS. The suitability of the proposals with regard to applications' requirements has been validated through concrete case studies
    corecore