839 research outputs found

    A contribution to the Semantics of Xcerpt, a Web Query and Transformation Language

    Get PDF
    Xcerpt [1] is a declarative and pattern-based query and transformation languag

    The XML Query Language Xcerpt: Design Principles, Examples, and Semantics

    Get PDF
    Most query and transformation languages developed since the mid 90es for XML and semistructured data—e.g. XQuery [1], the precursors of XQuery [2], and XSLT [3]—build upon a path-oriented node selection: A node in a data item is specified in terms of a root-to-node path in the manner of the file selection languages of operating systems. Constructs inspired from the regular expression constructs , +, ?, and “wildcards” give rise to a flexible node retrieval from incompletely specified data items. This paper further introduces into Xcerpt, a query and transformation language further developing an alternative approach to querying XML and semistructured data first introduced with the language UnQL [4]. A metaphor for this approach views queries as patterns, answers as data items matching the queries. Formally, an answer to a query is defined as a simulation [5] of an instance of the query in a data item

    Web and Semantic Web Query Languages

    Get PDF
    A number of techniques have been developed to facilitate powerful data retrieval on the Web and Semantic Web. Three categories of Web query languages can be distinguished, according to the format of the data they can retrieve: XML, RDF and Topic Maps. This article introduces the spectrum of languages falling into these categories and summarises their salient aspects. The languages are introduced using common sample data and query types. Key aspects of the query languages considered are stressed in a conclusion

    Content-Aware DataGuides for Indexing Large Collections of XML Documents

    Get PDF
    XML is well-suited for modelling structured data with textual content. However, most indexing approaches perform structure and content matching independently, combining the retrieved path and keyword occurrences in a third step. This paper shows that retrieval in XML documents can be accelerated significantly by processing text and structure simultaneously during all retrieval phases. To this end, the Content-Aware DataGuide (CADG) enhances the wellknown DataGuide with (1) simultaneous keyword and path matching and (2) a precomputed content/structure join. Extensive experiments prove the CADG to be 50-90% faster than the DataGuide for various sorts of query and document, including difficult cases such as poorly structured queries and recursive document paths. A new query classification scheme identifies precise query characteristics with a predominant influence on the performance of the individual indices. The experiments show that the CADG is applicable to many real-world applications, in particular large collections of heterogeneously structured XML documents

    Comparative Analysis of Five XML Query Languages

    Full text link
    XML is becoming the most relevant new standard for data representation and exchange on the WWW. Novel languages for extracting and restructuring the XML content have been proposed, some in the tradition of database query languages (i.e. SQL, OQL), others more closely inspired by XML. No standard for XML query language has yet been decided, but the discussion is ongoing within the World Wide Web Consortium and within many academic institutions and Internet-related major companies. We present a comparison of five, representative query languages for XML, highlighting their common features and differences.Comment: TeX v3.1415, 17 pages, 6 figures, to be published in ACM Sigmod Record, March 200

    EquiX---A Search and Query Language for XML

    Full text link
    EquiX is a search language for XML that combines the power of querying with the simplicity of searching. Requirements for such languages are discussed and it is shown that EquiX meets the necessary criteria. Both a graphical abstract syntax and a formal concrete syntax are presented for EquiX queries. In addition, the semantics is defined and an evaluation algorithm is presented. The evaluation algorithm is polynomial under combined complexity. EquiX combines pattern matching, quantification and logical expressions to query both the data and meta-data of XML documents. The result of a query in EquiX is a set of XML documents. A DTD describing the result documents is derived automatically from the query.Comment: technical report of Hebrew University Jerusalem Israe

    Investigation into Indexing XML Data Techniques

    Get PDF
    The rapid development of XML technology improves the WWW, since the XML data has many advantages and has become a common technology for transferring data cross the internet. Therefore, the objective of this research is to investigate and study the XML indexing techniques in terms of their structures. The main goal of this investigation is to identify the main limitations of these techniques and any other open issues. Furthermore, this research considers most common XML indexing techniques and performs a comparison between them. Subsequently, this work makes an argument to find out these limitations. To conclude, the main problem of all the XML indexing techniques is the trade-off between the size and the efficiency of the indexes. So, all the indexes become large in order to perform well, and none of them is suitable for all users’ requirements. However, each one of these techniques has some advantages in somehow

    Visual exploration and retrieval of XML document collections with the generic system X2

    Get PDF
    This article reports on the XML retrieval system X2 which has been developed at the University of Munich over the last five years. In a typical session with X2, the user first browses a structural summary of the XML database in order to select interesting elements and keywords occurring in documents. Using this intermediate result, queries combining structure and textual references are composed semiautomatically. After query evaluation, the full set of answers is presented in a visual and structured way. X2 largely exploits the structure found in documents, queries and answers to enable new interactive visualization and exploration techniques that support mixed IR and database-oriented querying, thus bridging the gap between these three views on the data to be retrieved. Another salient characteristic of X2 which distinguishes it from other visual query systems for XML is that it supports various degrees of detailedness in the presentation of answers, as well as techniques for dynamically reordering and grouping retrieved elements once the complete answer set has been computed
    corecore