6,664 research outputs found

    Stochastic Block Coordinate Frank-Wolfe Algorithm for Large-Scale Biological Network Alignment

    Get PDF
    With increasingly "big" data available in biomedical research, deriving accurate and reproducible biology knowledge from such big data imposes enormous computational challenges. In this paper, motivated by recently developed stochastic block coordinate algorithms, we propose a highly scalable randomized block coordinate Frank-Wolfe algorithm for convex optimization with general compact convex constraints, which has diverse applications in analyzing biomedical data for better understanding cellular and disease mechanisms. We focus on implementing the derived stochastic block coordinate algorithm to align protein-protein interaction networks for identifying conserved functional pathways based on the IsoRank framework. Our derived stochastic block coordinate Frank-Wolfe (SBCFW) algorithm has the convergence guarantee and naturally leads to the decreased computational cost (time and space) for each iteration. Our experiments for querying conserved functional protein complexes in yeast networks confirm the effectiveness of this technique for analyzing large-scale biological networks

    Torque: topology-free querying of protein interaction networks

    Get PDF
    Torque is a tool for cross-species querying of protein–protein interaction networks. It aims to answer the following question: given a set of proteins constituting a known complex or a pathway in one species, can a similar complex or pathway be found in the protein network of another species? To this end, Torque seeks a matching set of proteins that are sequence similar to the query proteins and span a connected region of the target network, while allowing for both insertions and deletions. Unlike existing approaches, Torque does not require knowledge of the interconnections among the query proteins. It can handle large queries of up to 25 proteins. The Torque web server is freely available for use at http://www.cs.tau.ac.il/∼bnet/torque.html

    APPAGATO: an APproximate PArallel and stochastic GrAph querying TOol for biological networks

    Get PDF
    Motivation: Biological network querying is a problem requiring a considerable computational effort tobe solved. Given a target and a query network, it aims to find occurrences of the query in the target byconsidering topological and node similarities (i.e. mismatches between nodes, edges, or node labels).Querying tools that deal with similarities are crucial in biological network analysis since they providemeaningful results also in case of noisy data. In addition, since the size of available networks increasessteadily, existing algorithms and tools are becoming unsuitable. This is rising new challenges for the designof more efficient and accurate solutions.Results: This paper presents APPAGATO, a stochastic and parallel algorithm to find approximateoccurrences of a query network in biological networks. APPAGATO handles node, edge, and node labelmismatches. Thanks to its randomic and parallel nature, it applies to large networks and, compared toexisting tools, it provides higher performance as well as statistically significant more accurate results.Tests have been performed on protein-protein interaction networks annotated with synthetic and real geneontology terms. Case studies have been done by querying protein complexes among different species andtissue

    UniHI 4: new tools for query, analysis and visualization of the human protein–protein interactome

    Get PDF
    Human protein interaction maps have become important tools of biomedical research for the elucidation of molecular mechanisms and the identification of new modulators of disease processes. The Unified Human Interactome database (UniHI, http://www.unihi.org) provides researchers with a comprehensive platform to query and access human protein–protein interaction (PPI) data. Since its first release, UniHI has considerably increased in size. The latest update of UniHI includes over 250 000 interactions between ∼22 300 unique proteins collected from 14 major PPI sources. However, this wealth of data also poses new challenges for researchers due to the complexity of interaction networks retrieved from the database. We therefore developed several new tools to query, analyze and visualize human PPI networks. Most importantly, UniHI allows now the construction of tissue-specific interaction networks and focused querying of canonical pathways. This will enable researchers to target their analysis and to prioritize candidate proteins for follow-up studies

    Genes2Networks: Connecting Lists of Proteins by Using Background Literature-based Mammalian Networks

    Get PDF
    In recent years, in-silico literature-based mammalian protein-protein interaction network datasets have been developed. These datasets contain binary interactions extracted manually from legacy experimental biomedical research literature. Placing lists of genes or proteins identified as significantly changing in multivariate experiments, in the context of background knowledge about binary interactions, can be used to place these genes or proteins in the context of pathways and protein complexes.
Genes2Networks is a software system that integrates the content of ten mammalian literature-based interaction network datasets. Filtering to prune low-confidence interactions was implemented. Genes2Networks is delivered as a web-based service using AJAX. The system can be used to extract relevant subnetworks created from “seed” lists of human Entrez gene names. The output includes a dynamic linkable three color web-based network map, with a statistical analysis report that identifies significant intermediate nodes used to connect the seed list. Genes2Networks is available at http://actin.pharm.mssm.edu/genes2networks.
Genes2Network is a powerful web-based software application tool that can help experimental biologists to interpret high-throughput experimental results used in genomics and proteomics studies where the output of these experiments is a list of significantly changing genes or proteins. The system can be used to find relationships between nodes from the seed list, and predict novel nodes that play a key role in a common function

    Integration of Biological Sources: Exploring the Case of Protein Homology

    Get PDF
    Data integration is a key issue in the domain of bioin- formatics, which deals with huge amounts of heteroge- neous biological data that grows and changes rapidly. This paper serves as an introduction in the field of bioinformatics and the biological concepts it deals with, and an exploration of the integration problems a bioinformatics scientist faces. We examine ProGMap, an integrated protein homology system used by bioin- formatics scientists at Wageningen University, and several use cases related to protein homology. A key issue we identify is the huge manual effort required to unify source databases into a single resource. Un- certain databases are able to contain several possi- ble worlds, and it has been proposed that they can be used to significantly reduce initial integration efforts. We propose several directions for future work where uncertain databases can be applied to bioinformatics, with the goal of furthering the cause of bioinformatics integration

    Representing and analysing molecular and cellular function in the computer

    Get PDF
    Determining the biological function of a myriad of genes, and understanding how they interact to yield a living cell, is the major challenge of the post genome-sequencing era. The complexity of biological systems is such that this cannot be envisaged without the help of powerful computer systems capable of representing and analysing the intricate networks of physical and functional interactions between the different cellular components. In this review we try to provide the reader with an appreciation of where we stand in this regard. We discuss some of the inherent problems in describing the different facets of biological function, give an overview of how information on function is currently represented in the major biological databases, and describe different systems for organising and categorising the functions of gene products. In a second part, we present a new general data model, currently under development, which describes information on molecular function and cellular processes in a rigorous manner. The model is capable of representing a large variety of biochemical processes, including metabolic pathways, regulation of gene expression and signal transduction. It also incorporates taxonomies for categorising molecular entities, interactions and processes, and it offers means of viewing the information at different levels of resolution, and dealing with incomplete knowledge. The data model has been implemented in the database on protein function and cellular processes 'aMAZE' (http://www.ebi.ac.uk/research/pfbp/), which presently covers metabolic pathways and their regulation. Several tools for querying, displaying, and performing analyses on such pathways are briefly described in order to illustrate the practical applications enabled by the model

    SIFTER search: a web server for accurate phylogeny-based protein function prediction.

    Get PDF
    We are awash in proteins discovered through high-throughput sequencing projects. As only a minuscule fraction of these have been experimentally characterized, computational methods are widely used for automated annotation. Here, we introduce a user-friendly web interface for accurate protein function prediction using the SIFTER algorithm. SIFTER is a state-of-the-art sequence-based gene molecular function prediction algorithm that uses a statistical model of function evolution to incorporate annotations throughout the phylogenetic tree. Due to the resources needed by the SIFTER algorithm, running SIFTER locally is not trivial for most users, especially for large-scale problems. The SIFTER web server thus provides access to precomputed predictions on 16 863 537 proteins from 232 403 species. Users can explore SIFTER predictions with queries for proteins, species, functions, and homologs of sequences not in the precomputed prediction set. The SIFTER web server is accessible at http://sifter.berkeley.edu/ and the source code can be downloaded

    BcCluster: a bladder cancer database at the molecular level

    Get PDF
    Background: Bladder Cancer (BC) has two clearly distinct phenotypes. Non-muscle invasive BC has good prognosis and is treated with tumor resection and intravesical therapy whereas muscle invasive BC has poor prognosis and requires usually systemic cisplatin based chemotherapy either prior to or after radical cystectomy. Neoadjuvant chemotherapy is not often used for patients undergoing cystectomy. High-throughput analytical omics techniques are now available that allow the identification of individual molecular signatures to characterize the invasive phenotype. However, a large amount of data produced by omics experiments is not easily accessible since it is often scattered over many publications or stored in supplementary files. Objective: To develop a novel open-source database, BcCluster (http://www.bccluster.org/), dedicated to the comprehensive molecular characterization of muscle invasive bladder carcinoma. Materials: A database was created containing all reported molecular features significant in invasive BC. The query interface was developed in Ruby programming language (version 1.9.3) using the web-framework Rails (version 4.1.5) (http://rubyonrails.org/). Results: BcCluster contains the data from 112 published references, providing 1,559 statistically significant features relative to BC invasion. The database also holds 435 protein-protein interaction data and 92 molecular pathways significant in BC invasion. The database can be used to retrieve binding partners and pathways for any protein of interest. We illustrate this possibility using survivin, a known BC biomarker. Conclusions: BcCluster is an online database for retrieving molecular signatures relative to BC invasion. This application offers a comprehensive view of BC invasiveness at the molecular level and allows formulation of research hypotheses relevant to this phenotype
    corecore