144 research outputs found

    Equality-friendly well-founded semantics and applications to description logics

    Get PDF
    We tackle the problem of defining a well-founded semantics (WFS) for Datalog rules with existentially quantified variables in their heads and nega- tions in their bodies. In particular, we provide a WFS for the recent Datalog± family of ontology languages, which covers several important description logics (DLs). To do so, we generalize Datalog± by non-stratified nonmonotonic nega- tion in rule bodies, and we define a WFS for this generalization via guarded fixed point logic. We refer to this approach as equality-friendly WFS, since it has the advantage that it does not make the unique name assumption (UNA); this brings it close to OWL and its profiles as well as typical DLs, which also do not make the UNA. We prove that for guarded Datalog± with negation under the equality- friendly WFS, conjunctive query answering is decidable, and we provide precise complexity results for this problem. From these results, we obtain precise defi- nitions of the standard WFS extensions of EL and of members of the DL-Lite family, as well as corresponding complexity results for query answering

    Computing Query Answering With Non-Monotonic Rules: A Case Study of Archaeology Qualitative Spatial Reasoning

    Get PDF
    International audienceThis paper deals with querying ontology-based knowledge bases equipped with non-monotonic rules through a case study within the framework of Cultural Heritage. It focuses on 3D underwater surveys on the Xlendi wreck which is represented by an OWL2 knowledge base with a large dataset. The paper aims at improving the interactions between the archaeologists and the knowledge base providing new queries that involve non-monotonic rules in order to perform qualitative spatial reasoning. To this end, the knowledge base initially represented in OWL2-QL is translated into an equivalent Answer Set Programming (ASP) program and is enriched with a set of non-monotonic ASP rules suitable to express default and exceptions. An ASP query answering approach is proposed and implemented. Furthermore due to the increased expressiveness of non-monotonic rules it provides spatial reasoning and spatial relations between artifacts query answering which is not possible with query answering languages such as SPARQL and SQWRL

    LoLa: a modular ontology of logics, languages and translations

    Get PDF
    The Distributed Ontology Language (DOL), currently being standardised within the OntoIOp (Ontology Integration and Interoperability) activity of ISO/TC 37/SC 3, aims at providing a unified framework for (i) ontologies formalised in heterogeneous logics, (ii) modular ontologies, (iii) links between ontologies, and (iv) annotation of ontologies.\ud \ud This paper focuses on the LoLa ontology, which formally describes DOL's vocabulary for logics, ontology languages (and their serialisations), as well as logic translations. Interestingly, to adequately formalise the logical relationships between these notions, LoLa itself needs to be axiomatised heterogeneously---a task for which we choose DOL. Namely, we use the logic RDF for ABox assertions, OWL for basic axiomatisations of various modules concerning logics, languages, and translations, FOL for capturing certain closure rules that are not expressible in OWL (For the sake of tool availability it is still helpful not to map everything to FOL.), and circumscription for minimising the extension of concepts describing default translations

    The Vadalog System: Datalog-based Reasoning for Knowledge Graphs

    Full text link
    Over the past years, there has been a resurgence of Datalog-based systems in the database community as well as in industry. In this context, it has been recognized that to handle the complex knowl\-edge-based scenarios encountered today, such as reasoning over large knowledge graphs, Datalog has to be extended with features such as existential quantification. Yet, Datalog-based reasoning in the presence of existential quantification is in general undecidable. Many efforts have been made to define decidable fragments. Warded Datalog+/- is a very promising one, as it captures PTIME complexity while allowing ontological reasoning. Yet so far, no implementation of Warded Datalog+/- was available. In this paper we present the Vadalog system, a Datalog-based system for performing complex logic reasoning tasks, such as those required in advanced knowledge graphs. The Vadalog system is Oxford's contribution to the VADA research programme, a joint effort of the universities of Oxford, Manchester and Edinburgh and around 20 industrial partners. As the main contribution of this paper, we illustrate the first implementation of Warded Datalog+/-, a high-performance Datalog+/- system utilizing an aggressive termination control strategy. We also provide a comprehensive experimental evaluation.Comment: Extended version of VLDB paper <https://doi.org/10.14778/3213880.3213888

    State-of-the-art on evolution and reactivity

    Get PDF
    This report starts by, in Chapter 1, outlining aspects of querying and updating resources on the Web and on the Semantic Web, including the development of query and update languages to be carried out within the Rewerse project. From this outline, it becomes clear that several existing research areas and topics are of interest for this work in Rewerse. In the remainder of this report we further present state of the art surveys in a selection of such areas and topics. More precisely: in Chapter 2 we give an overview of logics for reasoning about state change and updates; Chapter 3 is devoted to briefly describing existing update languages for the Web, and also for updating logic programs; in Chapter 4 event-condition-action rules, both in the context of active database systems and in the context of semistructured data, are surveyed; in Chapter 5 we give an overview of some relevant rule-based agents frameworks

    Provenance : from long-term preservation to query federation and grid reasoning

    Get PDF

    Development of a Logic Layer in the Semantic Web: Research Issues

    Get PDF
    The ontology layer of the semantic web is now mature enough (i.e. standards like RDF, RDFs, OWL, OWL 2) and the next step is to work on a logic layer for the development of advanced reasoning capabilities for knowledge extraction and efficient decision making. Adding logic to the web means using rules to make inferences. Rules are a means of expressing business processes, policies, contracts etc but most of the studies have focused on the use of monotonic logics in layered development of the semantic web which provides no mechanism for representing or handling incomplete or contradictory information respectively. This paper discusses argumentation, semantic web and defeasible logic programming with their distinct features and identifies the different research issues that need to be addressed in order to realize defeasible argumentative reasoning in the semantic web applications

    Combining open and closed world reasoning for the semantic web

    Get PDF
    Dissertação para obtenção do Grau de Doutor em InformáticaOne important problem in the ongoing standardization of knowledge representation languages for the Semantic Web is combining open world ontology languages, such as the OWL-based ones, and closed world rule-based languages. The main difficulty of such a combination is that both formalisms are quite orthogonal w.r.t. expressiveness and how decidability is achieved. Combining non-monotonic rules and ontologies is thus a challenging task that requires careful balancing between expressiveness of the knowledge representation language and the computational complexity of reasoning. In this thesis, we will argue in favor of a combination of ontologies and nonmonotonic rules that tightly integrates the two formalisms involved, that has a computational complexity that is as low as possible, and that allows us to query for information instead of calculating the whole model. As our starting point we choose the mature approach of hybrid MKNF knowledge bases, which is based on an adaptation of the Stable Model Semantics to knowledge bases consisting of ontology axioms and rules. We extend the two-valued framework of MKNF logics to a three-valued logics, and we propose a well-founded semantics for non-disjunctive hybrid MKNF knowledge bases. This new semantics promises to provide better efficiency of reasoning,and it is faithful w.r.t. the original two-valued MKNF semantics and compatible with both the OWL-based semantics and the traditional Well- Founded Semantics for logic programs. We provide an algorithm based on operators to compute the unique model, and we extend SLG resolution with tabling to a general framework that allows us to query a combination of non-monotonic rules and any given ontology language. Finally, we investigate concrete instances of that procedure w.r.t. three tractable ontology languages, namely the three description logics underlying the OWL 2 pro les.Fundação para a Ciência e Tecnologia - grant contract SFRH/BD/28745/200
    corecore