10,191 research outputs found

    End-to-end Learning for Short Text Expansion

    Full text link
    Effectively making sense of short texts is a critical task for many real world applications such as search engines, social media services, and recommender systems. The task is particularly challenging as a short text contains very sparse information, often too sparse for a machine learning algorithm to pick up useful signals. A common practice for analyzing short text is to first expand it with external information, which is usually harvested from a large collection of longer texts. In literature, short text expansion has been done with all kinds of heuristics. We propose an end-to-end solution that automatically learns how to expand short text to optimize a given learning task. A novel deep memory network is proposed to automatically find relevant information from a collection of longer documents and reformulate the short text through a gating mechanism. Using short text classification as a demonstrating task, we show that the deep memory network significantly outperforms classical text expansion methods with comprehensive experiments on real world data sets.Comment: KDD'201

    Neural Vector Spaces for Unsupervised Information Retrieval

    Get PDF
    We propose the Neural Vector Space Model (NVSM), a method that learns representations of documents in an unsupervised manner for news article retrieval. In the NVSM paradigm, we learn low-dimensional representations of words and documents from scratch using gradient descent and rank documents according to their similarity with query representations that are composed from word representations. We show that NVSM performs better at document ranking than existing latent semantic vector space methods. The addition of NVSM to a mixture of lexical language models and a state-of-the-art baseline vector space model yields a statistically significant increase in retrieval effectiveness. Consequently, NVSM adds a complementary relevance signal. Next to semantic matching, we find that NVSM performs well in cases where lexical matching is needed. NVSM learns a notion of term specificity directly from the document collection without feature engineering. We also show that NVSM learns regularities related to Luhn significance. Finally, we give advice on how to deploy NVSM in situations where model selection (e.g., cross-validation) is infeasible. We find that an unsupervised ensemble of multiple models trained with different hyperparameter values performs better than a single cross-validated model. Therefore, NVSM can safely be used for ranking documents without supervised relevance judgments.Comment: TOIS 201

    Unsupervised, Efficient and Semantic Expertise Retrieval

    Get PDF
    We introduce an unsupervised discriminative model for the task of retrieving experts in online document collections. We exclusively employ textual evidence and avoid explicit feature engineering by learning distributed word representations in an unsupervised way. We compare our model to state-of-the-art unsupervised statistical vector space and probabilistic generative approaches. Our proposed log-linear model achieves the retrieval performance levels of state-of-the-art document-centric methods with the low inference cost of so-called profile-centric approaches. It yields a statistically significant improved ranking over vector space and generative models in most cases, matching the performance of supervised methods on various benchmarks. That is, by using solely text we can do as well as methods that work with external evidence and/or relevance feedback. A contrastive analysis of rankings produced by discriminative and generative approaches shows that they have complementary strengths due to the ability of the unsupervised discriminative model to perform semantic matching.Comment: WWW2016, Proceedings of the 25th International Conference on World Wide Web. 201

    Learning to Hash-tag Videos with Tag2Vec

    Full text link
    User-given tags or labels are valuable resources for semantic understanding of visual media such as images and videos. Recently, a new type of labeling mechanism known as hash-tags have become increasingly popular on social media sites. In this paper, we study the problem of generating relevant and useful hash-tags for short video clips. Traditional data-driven approaches for tag enrichment and recommendation use direct visual similarity for label transfer and propagation. We attempt to learn a direct low-cost mapping from video to hash-tags using a two step training process. We first employ a natural language processing (NLP) technique, skip-gram models with neural network training to learn a low-dimensional vector representation of hash-tags (Tag2Vec) using a corpus of 10 million hash-tags. We then train an embedding function to map video features to the low-dimensional Tag2vec space. We learn this embedding for 29 categories of short video clips with hash-tags. A query video without any tag-information can then be directly mapped to the vector space of tags using the learned embedding and relevant tags can be found by performing a simple nearest-neighbor retrieval in the Tag2Vec space. We validate the relevance of the tags suggested by our system qualitatively and quantitatively with a user study

    HDIdx: High-Dimensional Indexing for Efficient Approximate Nearest Neighbor Search

    Get PDF
    Fast Nearest Neighbor (NN) search is a fundamental challenge in large-scale data processing and analytics, particularly for analyzing multimedia contents which are often of high dimensionality. Instead of using exact NN search, extensive research efforts have been focusing on approximate NN search algorithms. In this work, we present "HDIdx", an efficient high-dimensional indexing library for fast approximate NN search, which is open-source and written in Python. It offers a family of state-of-the-art algorithms that convert input high-dimensional vectors into compact binary codes, making them very efficient and scalable for NN search with very low space complexity
    • …
    corecore