1,151 research outputs found

    Effective mix-zone anonymization techniques for mobile travelers

    Get PDF
    Mix-zones are recognized as an alternative and complementary approach to spatial cloaking based location privacy protection. Unlike spatial cloaking techniques that perturb the location resolution through location k-anonymization, mix-zones break the continuity of location exposure by ensuring that users' movements cannot be traced while they are inside a mix-zone. In this paper we provide an overview of some known attacks that make mix-zones on road networks vulnerable and discuss a set of counter measures to make road network mix-zones attack-resilient. Concretely, we categorize the vulnerabilities of road network mix-zones into two classes: one due to the road network characteristics and user mobility, and the other due to the temporal, spatial and semantic correlations of location queries. We propose efficient road network mix-zone construction techniques that are resilient to attacks based on road network characteristics. Furthermore, we enhance the road network mix-zone framework with the concept of delay-tolerant mix-zones that introduce a combination of spatial and temporal shifts in the location exposure of the users to achieve higher anonymity. We study the factors that impact on the effectiveness of each of these attacks and evaluate the efficiency of the counter measures through extensive experiments on traces produced by GTMobiSim at different scales of geographic maps. © 2013 Springer Science+Business Media New York

    Anonymizing continuous queries with delay-tolerant mix-zones over road networks

    Get PDF
    This paper presents a delay-tolerant mix-zone framework for protecting the location privacy of mobile users against continuous query correlation attacks. First, we describe and analyze the continuous query correlation attacks (CQ-attacks) that perform query correlation based inference to break the anonymity of road network-aware mix-zones. We formally study the privacy strengths of the mix-zone anonymization under the CQ-attack model and argue that spatial cloaking or temporal cloaking over road network mix-zones is ineffective and susceptible to attacks that carry out inference by combining query correlation with timing correlation (CQ-timing attack) and transition correlation (CQ-transition attack) information. Next, we introduce three types of delay-tolerant road network mix-zones (i.e.; temporal, spatial and spatio-temporal) that are free from CQ-timing and CQ-transition attacks and in contrast to conventional mix-zones, perform a combination of both location mixing and identity mixing of spatially and temporally perturbed user locations to achieve stronger anonymity under the CQ-attack model. We show that by combining temporal and spatial delay-tolerant mix-zones, we can obtain the strongest anonymity for continuous queries while making acceptable tradeoff between anonymous query processing cost and temporal delay incurred in anonymous query processing. We evaluate the proposed techniques through extensive experiments conducted on realistic traces produced by GTMobiSim on different scales of geographic maps. Our experiments show that the proposed techniques offer high level of anonymity and attack resilience to continuous queries. © 2013 Springer Science+Business Media New York

    De-anonymizable location cloaking for privacy-controlled mobile systems

    Get PDF
    The rapid technology upgrades of mobile devices and the popularity of wireless networks significantly drive the emergence and development of Location-based Services (LBSs), thus greatly expanding the business of online services and enriching the user experience. However, the personal location data shared with the service providers also leave hidden risks on location privacy. Location anonymization techniques transform the exact location of a user into a cloaking area by including the locations of multiple users in the exposed area such that the exposed location is indistinguishable from that of the other users. However in such schemes, location information once perturbed cannot be recovered from the cloaking region and as a result, users of the location cannot obtain fine granular information even when they have access to it. In this paper, we propose Dynamic Reversible Cloaking (DRC) a new de-anonymziable location cloaking mechanism that allows to restore the actual location from the perturbed information through the use of an anonymization key. Extensive experiments using realistic road network traces show that the proposed scheme is efficient, effective and scalable

    Towards trajectory anonymization: a generalization-based approach

    Get PDF
    Trajectory datasets are becoming popular due to the massive usage of GPS and locationbased services. In this paper, we address privacy issues regarding the identification of individuals in static trajectory datasets. We first adopt the notion of k-anonymity to trajectories and propose a novel generalization-based approach for anonymization of trajectories. We further show that releasing anonymized trajectories may still have some privacy leaks. Therefore we propose a randomization based reconstruction algorithm for releasing anonymized trajectory data and also present how the underlying techniques can be adapted to other anonymity standards. The experimental results on real and synthetic trajectory datasets show the effectiveness of the proposed techniques

    Obfuscation and anonymization methods for locational privacy protection : a systematic literature review

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial TechnologiesThe mobile technology development combined with the business model of a majority of application companies is posing a potential risk to individuals’ privacy. Because the industry default practice is unrestricted data collection. Although, the data collection has virtuous usage in improve services and procedures; it also undermines user’s privacy. For that reason is crucial to learn what is the privacy protection mechanism state-of-art. Privacy protection can be pursued by passing new regulation and developing preserving mechanism. Understanding in what extent the current technology is capable to protect devices or systems is important to drive the advancements in the privacy preserving field, addressing the limits and challenges to deploy mechanism with a reasonable quality of Service-QoS level. This research aims to display and discuss the current privacy preserving schemes, its capabilities, limitations and challenges
    corecore