5,726 research outputs found

    Query-Adaptive Fusion for Multimodal Search

    Full text link

    A comparison of score, rank and probability-based fusion methods for video shot retrieval

    Get PDF
    It is now accepted that the most effective video shot retrieval is based on indexing and retrieving clips using multiple, parallel modalities such as text-matching, image-matching and feature matching and then combining or fusing these parallel retrieval streams in some way. In this paper we investigate a range of fusion methods for combining based on multiple visual features (colour, edge and texture), for combining based on multiple visual examples in the query and for combining multiple modalities (text and visual). Using three TRECVid collections and the TRECVid search task, we specifically compare fusion methods based on normalised score and rank that use either the average, weighted average or maximum of retrieval results from a discrete Jelinek-Mercer smoothed language model. We also compare these results with a simple probability-based combination of the language model results that assumes all features and visual examples are fully independent

    Vision systems with the human in the loop

    Get PDF
    The emerging cognitive vision paradigm deals with vision systems that apply machine learning and automatic reasoning in order to learn from what they perceive. Cognitive vision systems can rate the relevance and consistency of newly acquired knowledge, they can adapt to their environment and thus will exhibit high robustness. This contribution presents vision systems that aim at flexibility and robustness. One is tailored for content-based image retrieval, the others are cognitive vision systems that constitute prototypes of visual active memories which evaluate, gather, and integrate contextual knowledge for visual analysis. All three systems are designed to interact with human users. After we will have discussed adaptive content-based image retrieval and object and action recognition in an office environment, the issue of assessing cognitive systems will be raised. Experiences from psychologically evaluated human-machine interactions will be reported and the promising potential of psychologically-based usability experiments will be stressed

    A Knowledge-Grounded Multimodal Search-Based Conversational Agent

    Full text link
    Multimodal search-based dialogue is a challenging new task: It extends visually grounded question answering systems into multi-turn conversations with access to an external database. We address this new challenge by learning a neural response generation system from the recently released Multimodal Dialogue (MMD) dataset (Saha et al., 2017). We introduce a knowledge-grounded multimodal conversational model where an encoded knowledge base (KB) representation is appended to the decoder input. Our model substantially outperforms strong baselines in terms of text-based similarity measures (over 9 BLEU points, 3 of which are solely due to the use of additional information from the KB

    TRECVid 2006 experiments at Dublin City University

    Get PDF
    In this paper we describe our retrieval system and experiments performed for the automatic search task in TRECVid 2006. We submitted the following six automatic runs: ā€¢ F A 1 DCU-Base 6: Baseline run using only ASR/MT text features. ā€¢ F A 2 DCU-TextVisual 2: Run using text and visual features. ā€¢ F A 2 DCU-TextVisMotion 5: Run using text, visual, and motion features. ā€¢ F B 2 DCU-Visual-LSCOM 3: Text and visual features combined with concept detectors. ā€¢ F B 2 DCU-LSCOM-Filters 4: Text, visual, and motion features with concept detectors. ā€¢ F B 2 DCU-LSCOM-2 1: Text, visual, motion, and concept detectors with negative concepts. The experiments were designed both to study the addition of motion features and separately constructed models for semantic concepts, to runs using only textual and visual features, as well as to establish a baseline for the manually-assisted search runs performed within the collaborative K-Space project and described in the corresponding TRECVid 2006 notebook paper. The results of the experiments indicate that the performance of automatic search can be improved with suitable concept models. This, however, is very topic-dependent and the questions of when to include such models and which concept models should be included, remain unanswered. Secondly, using motion features did not lead to performance improvement in our experiments. Finally, it was observed that our text features, despite displaying a rather poor performance overall, may still be useful even for generic search topics

    Deep Binary Reconstruction for Cross-modal Hashing

    Full text link
    With the increasing demand of massive multimodal data storage and organization, cross-modal retrieval based on hashing technique has drawn much attention nowadays. It takes the binary codes of one modality as the query to retrieve the relevant hashing codes of another modality. However, the existing binary constraint makes it difficult to find the optimal cross-modal hashing function. Most approaches choose to relax the constraint and perform thresholding strategy on the real-value representation instead of directly solving the original objective. In this paper, we first provide a concrete analysis about the effectiveness of multimodal networks in preserving the inter- and intra-modal consistency. Based on the analysis, we provide a so-called Deep Binary Reconstruction (DBRC) network that can directly learn the binary hashing codes in an unsupervised fashion. The superiority comes from a proposed simple but efficient activation function, named as Adaptive Tanh (ATanh). The ATanh function can adaptively learn the binary codes and be trained via back-propagation. Extensive experiments on three benchmark datasets demonstrate that DBRC outperforms several state-of-the-art methods in both image2text and text2image retrieval task.Comment: 8 pages, 5 figures, accepted by ACM Multimedia 201

    Multimodal Grounding for Language Processing

    Get PDF
    This survey discusses how recent developments in multimodal processing facilitate conceptual grounding of language. We categorize the information flow in multimodal processing with respect to cognitive models of human information processing and analyze different methods for combining multimodal representations. Based on this methodological inventory, we discuss the benefit of multimodal grounding for a variety of language processing tasks and the challenges that arise. We particularly focus on multimodal grounding of verbs which play a crucial role for the compositional power of language.Comment: The paper has been published in the Proceedings of the 27 Conference of Computational Linguistics. Please refer to this version for citations: https://www.aclweb.org/anthology/papers/C/C18/C18-1197
    • ā€¦
    corecore