64 research outputs found

    Query inseparability for ALC ontologies

    Get PDF
    We investigate the problem whether two ALC ontologies are indistinguishable (or inseparable) by means of queries in a given signature, which is fundamental for ontology engineering tasks such as ontology versioning, modularisation, update, and forgetting. We consider both knowledge base (KB) and TBox inseparability. For KBs, we give model-theoretic criteria in terms of (finite partial) homomorphisms and products and prove that this problem is undecidable for conjunctive queries (CQs), but 2ExpTime-complete for unions of CQs (UCQs). The same results hold if (U)CQs are replaced by rooted (U)CQs, where every variable is connected to an answer variable. We also show that inseparability by CQs is still undecidable if one KB is given in the lightweight DL EL and if no restrictions are imposed on the signature of the CQs. We also consider the problem whether two ALC TBoxes give the same answers to any query over any ABox in a given signature and show that, for CQs, this problem is undecidable, too. We then develop model-theoretic criteria for HornALC TBoxes and show using tree automata that, in contrast, inseparability becomes decidable and 2ExpTime-complete, even ExpTime-complete when restricted to (unions of) rooted CQs

    Query-based entailment and inseparability for ALC ontologies

    Get PDF
    We investigate the problem whether two ALC knowledge bases are indistinguishable by queries over a given vocabulary. We give model-theoretic criteria and prove that this problem is undecid- able for conjunctive queries (CQs) but decidable in 2EXPTIME for unions of rooted CQs. We also consider the problem whether two ALC TBoxes give the same answers to any query in a given vocabulary over all ABoxes, and show that for CQs this problem is undecidable, too, but becomes decidable and 2EXPTIME-complete in Horn-ALC, and even EXPTIME-complete in Horn-ALC when restricted to (unions of) rooted CQs

    Query inseparability by games

    Get PDF
    We investigate conjunctive query inseparability of description logic knowledge bases (KBs) with respect to a given signature, a fundamental problem for KB versioning, module extraction, forgetting and knowledge exchange. We develop a game-theoretic technique for checking query inseparability of KBs expressed in fragments of Horn-ALCHI, and show a number of complexity results ranging from P to ExpTime and 2ExpTime. We also employ our results to resolve two major open problems for OWL 2 QL by showing that TBox query inseparability and the membership problem for universal UCQ-solutions in knowledge exchange are both ExpTime-complete for combined complexity

    Horn rewritability vs PTime query evaluation for description logic TBoxes

    Get PDF
    We study the following question: if τ is a TBox that is formulated in an expressive DL L and all CQs can be evaluated in PTime w.r.t. τ, can τ be replaced by a TBox τ' that is formulated in the Horn-fragment of L and such that for all CQs and ABoxes, the answers w.r.t. τ and τ' coincide? Our main results are that this is indeed the case when L is the set of ALCHI or ALCIF TBoxes of quantifier depth 1 (which covers the majority of such TBoxes), but not for ALCHIF and ALCQ TBoxes of depth 1

    When are description logic knowledge bases indistinguishable?

    Get PDF
    Deciding inseparability of description logic knowledge bases (KBs) with respect to conjunctive queries is fundamental for many KB engineering and maintenance tasks including versioning, module extraction, knowledge exchange and forgetting. We study the combined and data complexity of this inseparability problem for fragments of Horn-ALCHI, including the description logics underpinning OWL 2 QL and OWL 2 EL

    Conjunctive query inseparability of OWL 2 QL TBoxes

    Get PDF
    The OWL2 profile OWL 2 QL, based on the DL-Lite family of description logics, is emerging as a major language for developing new ontologies and approximating the existing ones. Its main application is ontology based data access, where ontologies are used to provide background knowledge for answering queries over data. We investigate the corresponding notion of query inseparability (or equivalence) for OWL 2 QL ontologies and show that deciding query inseparability is PSpace-hard and in ExpTime. We give polynomial-time (incomplete) algorithms and demonstrate by experiments that they can be used for practical module extraction
    corecore