2,447 research outputs found

    A query processing system for very large spatial databases using a new map algebra

    Get PDF
    Dans cette thèse nous introduisons une approche de traitement de requêtes pour des bases de donnée spatiales. Nous expliquons aussi les concepts principaux que nous avons défini et développé: une algèbre spatiale et une approche à base de graphe utilisée dans l'optimisateur. L'algèbre spatiale est défini pour exprimer les requêtes et les règles de transformation pendant les différentes étapes de l'optimisation de requêtes. Nous avons essayé de définir l'algèbre la plus complète que possible pour couvrir une grande variété d'application. L'opérateur algébrique reçoit et produit seulement des carte. Les fonctions reçoivent des cartes et produisent des scalaires ou des objets. L'optimisateur reçoit la requête en expression algébrique et produit un QEP (Query Evaluation Plan) efficace dans deux étapes: génération de QEG (Query Evaluation Graph) et génération de QEP. Dans première étape un graphe (QEG) équivalent de l'expression algébrique est produit. Les règles de transformation sont utilisées pour transformer le graphe a un équivalent plus efficace. Dans deuxième étape un QEP est produit de QEG passé de l'étape précédente. Le QEP est un ensemble des opérations primitives consécutives qui produit les résultats finals (la réponse finale de la requête soumise au base de donnée). Nous avons implémenté l'optimisateur, un générateur de requête spatiale aléatoire, et une base de donnée simulée. La base de donnée spatiale simulée est un ensemble de fonctions pour simuler des opérations spatiales primitives. Les requêtes aléatoires sont soumis à l'optimisateur. Les QEPs générées sont soumis au simulateur de base de données spatiale. Les résultats expérimentaux sont utilisés pour discuter les performances et les caractéristiques de l'optimisateur.Abstract: In this thesis we introduce a query processing approach for spatial databases and explain the main concepts we defined and developed: a spatial algebra and a graph based approach used in the optimizer. The spatial algebra was defined to express queries and transformation rules during different steps of the query optimization. To cover a vast variety of potential applications, we tried to define the algebra as complete as possible. The algebra looks at the spatial data as maps of spatial objects. The algebraic operators act on the maps and result in new maps. Aggregate functions can act on maps and objects and produce objects or basic values (characters, numbers, etc.). The optimizer receives the query in algebraic expression and produces one efficient QEP (Query Evaluation Plan) through two main consecutive blocks: QEG (Query Evaluation Graph) generation and QEP generation. In QEG generation we construct a graph equivalent of the algebraic expression and then apply graph transformation rules to produce one efficient QEG. In QEP generation we receive the efficient QEG and do predicate ordering and approximation and then generate the efficient QEP. The QEP is a set of consecutive phases that must be executed in the specified order. Each phase consist of one or more primitive operations. All primitive operations that are in the same phase can be executed in parallel. We implemented the optimizer, a randomly spatial query generator and a simulated spatial database. The query generator produces random queries for the purpose of testing the optimizer. The simulated spatial database is a set of functions to simulate primitive spatial operations. They return the cost of the corresponding primitive operation according to input parameters. We put randomly generated queries to the optimizer, got the generated QEPs and put them to the spatial database simulator. We used the experimental results to discuss on the optimizer characteristics and performance. The optimizer was designed for databases with a very large number of spatial objects nevertheless most of the concepts we used can be applied to all spatial information systems."--Résumé abrégé par UMI

    Developing a labelled object-relational constraint database architecture for the projection operator

    Get PDF
    Current relational databases have been developed in order to improve the handling of stored data, however, there are some types of information that have to be analysed for which no suitable tools are available. These new types of data can be represented and treated as constraints, allowing a set of data to be represented through equations, inequations and Boolean combinations of both. To this end, constraint databases were defined and some prototypes were developed. Since there are aspects that can be improved, we propose a new architecture called labelled object-relational constraint database (LORCDB). This provides more expressiveness, since the database is adapted in order to support more types of data, instead of the data having to be adapted to the database. In this paper, the projection operator of SQL is extended so that it works with linear and polynomial constraints and variables of constraints. In order to optimize query evaluation efficiency, some strategies and algorithms have been used to obtain an efficient query plan. Most work on constraint databases uses spatiotemporal data as case studies. However, this paper proposes model-based diagnosis since it is a highly potential research area, and model-based diagnosis permits more complicated queries than spatiotemporal examples. Our architecture permits the queries over constraints to be defined over different sets of variables by using symbolic substitution and elimination of variables.Ministerio de Ciencia y TecnologĂ­a DPI2006-15476-C02-0

    Query processing of geometric objects with free form boundarie sin spatial databases

    Get PDF
    The increasing demand for the use of database systems as an integrating factor in CAD/CAM applications has necessitated the development of database systems with appropriate modelling and retrieval capabilities. One essential problem is the treatment of geometric data which has led to the development of spatial databases. Unfortunately, most proposals only deal with simple geometric objects like multidimensional points and rectangles. On the other hand, there has been a rapid development in the field of representing geometric objects with free form curves or surfaces, initiated by engineering applications such as mechanical engineering, aviation or astronautics. Therefore, we propose a concept for the realization of spatial retrieval operations on geometric objects with free form boundaries, such as B-spline or Bezier curves, which can easily be integrated in a database management system. The key concept is the encapsulation of geometric operations in a so-called query processor. First, this enables the definition of an interface allowing the integration into the data model and the definition of the query language of a database system for complex objects. Second, the approach allows the use of an arbitrary representation of the geometric objects. After a short description of the query processor, we propose some representations for free form objects determined by B-spline or Bezier curves. The goal of efficient query processing in a database environment is achieved using a combination of decomposition techniques and spatial access methods. Finally, we present some experimental results indicating that the performance of decomposition techniques is clearly superior to traditional query processing strategies for geometric objects with free form boundaries

    Deductive Optimization of Relational Data Storage

    Full text link
    Optimizing the physical data storage and retrieval of data are two key database management problems. In this paper, we propose a language that can express a wide range of physical database layouts, going well beyond the row- and column-based methods that are widely used in database management systems. We use deductive synthesis to turn a high-level relational representation of a database query into a highly optimized low-level implementation which operates on a specialized layout of the dataset. We build a compiler for this language and conduct experiments using a popular database benchmark, which shows that the performance of these specialized queries is competitive with a state-of-the-art in memory compiled database system

    Object-oriented querying of existing relational databases

    Get PDF
    In this paper, we present algorithms which allow an object-oriented querying of existing relational databases. Our goal is to provide an improved query interface for relational systems with better query facilities than SQL. This seems to be very important since, in real world applications, relational systems are most commonly used and their dominance will remain in the near future. To overcome the drawbacks of relational systems, especially the poor query facilities of SQL, we propose a schema transformation and a query translation algorithm. The schema transformation algorithm uses additional semantic information to enhance the relational schema and transform it into a corresponding object-oriented schema. If the additional semantic information can be deducted from an underlying entity-relationship design schema, the schema transformation may be done fully automatically. To query the created object-oriented schema, we use the Structured Object Query Language (SOQL) which provides declarative query facilities on objects. SOQL queries using the created object-oriented schema are much shorter, easier to write and understand and more intuitive than corresponding S Q L queries leading to an enhanced usability and an improved querying of the database. The query translation algorithm automatically translates SOQL queries into equivalent SQL queries for the original relational schema

    Towards an Efficient Evaluation of General Queries

    Get PDF
    Database applications often require to evaluate queries containing quantifiers or disjunctions, e.g., for handling general integrity constraints. Existing efficient methods for processing quantifiers depart from the relational model as they rely on non-algebraic procedures. Looking at quantified query evaluation from a new angle, we propose an approach to process quantifiers that makes use of relational algebra operators only. Our approach performs in two phases. The first phase normalizes the queries producing a canonical form. This form permits to improve the translation into relational algebra performed during the second phase. The improved translation relies on a new operator - the complement-join - that generalizes the set difference, on algebraic expressions of universal quantifiers that avoid the expensive division operator in many cases, and on a special processing of disjunctions by means of constrained outer-joins. Our method achieves an efficiency at least comparable with that of previous proposals, better in most cases. Furthermore, it is considerably simpler to implement as it completely relies on relational data structures and operators

    Query processing of spatial objects: Complexity versus Redundancy

    Get PDF
    The management of complex spatial objects in applications, such as geography and cartography, imposes stringent new requirements on spatial database systems, in particular on efficient query processing. As shown before, the performance of spatial query processing can be improved by decomposing complex spatial objects into simple components. Up to now, only decomposition techniques generating a linear number of very simple components, e.g. triangles or trapezoids, have been considered. In this paper, we will investigate the natural trade-off between the complexity of the components and the redundancy, i.e. the number of components, with respect to its effect on efficient query processing. In particular, we present two new decomposition methods generating a better balance between the complexity and the number of components than previously known techniques. We compare these new decomposition methods to the traditional undecomposed representation as well as to the well-known decomposition into convex polygons with respect to their performance in spatial query processing. This comparison points out that for a wide range of query selectivity the new decomposition techniques clearly outperform both the undecomposed representation and the convex decomposition method. More important than the absolute gain in performance by a factor of up to an order of magnitude is the robust performance of our new decomposition techniques over the whole range of query selectivity

    Report on the 6th ADBIS’2002 conference

    Get PDF
    The 6th East European Conference ADBIS 2002 was held on September~8--11, 2002 in Bratislava, Slovakia. It was organised by the Slovak University of Technology (and, in particular, its Faculty of Electrical Engineering and Information Technology) in Bratislava in co-operation with the ACM SIGMOD, the Moscow ACM SIGMOD Chapter, and Slovak Society for Computer Science. The call for papers attracted 115 submissions from 35~countries. The international program committee, consisting of 43 researchers from 21 countries, selected 25 full papers and 4 short papers for a monograph volume published by the Springer Verlag. Beside those 29 regular papers, the volume includes also 3 invited papers presented at the Conference as invited lectures. Additionally, 20 papers have been selected for the Research communications volume. The authors of accepted papers come from 22~countries of 4 continents, indicating the truly international recognition of the ADBIS conference series. The conference had 104 registered participants from 22~countries and included invited lectures, tutorials, and regular sessions. This report describes the goals of the conference and summarizes the issues discussed during the sessions
    • …
    corecore