2,547 research outputs found

    Stochastic Database Cracking: Towards Robust Adaptive Indexing in Main-Memory Column-Stores

    Get PDF
    Modern business applications and scientific databases call for inherently dynamic data storage environments. Such environments are characterized by two challenging features: (a) they have little idle system time to devote on physical design; and (b) there is little, if any, a priori workload knowledge, while the query and data workload keeps changing dynamically. In such environments, traditional approaches to index building and maintenance cannot apply. Database cracking has been proposed as a solution that allows on-the-fly physical data reorganization, as a collateral effect of query processing. Cracking aims to continuously and automatically adapt indexes to the workload at hand, without human intervention. Indexes are built incrementally, adaptively, and on demand. Nevertheless, as we show, existing adaptive indexing methods fail to deliver workload-robustness; they perform much better with random workloads than with others. This frailty derives from the inelasticity with which these approaches interpret each query as a hint on how data should be stored. Current cracking schemes blindly reorganize the data within each query's range, even if that results into successive expensive operations with minimal indexing benefit. In this paper, we introduce stochastic cracking, a significantly more resilient approach to adaptive indexing. Stochastic cracking also uses each query as a hint on how to reorganize data, but not blindly so; it gains resilience and avoids performance bottlenecks by deliberately applying certain arbitrary choices in its decision-making. Thereby, we bring adaptive indexing forward to a mature formulation that confers the workload-robustness previous approaches lacked. Our extensive experimental study verifies that stochastic cracking maintains the desired properties of original database cracking while at the same time it performs well with diverse realistic workloads.Comment: VLDB201

    Old Techniques for New Join Algorithms: A Case Study in RDF Processing

    Full text link
    Recently there has been significant interest around designing specialized RDF engines, as traditional query processing mechanisms incur orders of magnitude performance gaps on many RDF workloads. At the same time researchers have released new worst-case optimal join algorithms which can be asymptotically better than the join algorithms in traditional engines. In this paper we apply worst-case optimal join algorithms to a standard RDF workload, the LUBM benchmark, for the first time. We do so using two worst-case optimal engines: (1) LogicBlox, a commercial database engine, and (2) EmptyHeaded, our prototype research engine with enhanced worst-case optimal join algorithms. We show that without any added optimizations both LogicBlox and EmptyHeaded outperform two state-of-the-art specialized RDF engines, RDF-3X and TripleBit, by up to 6x on cyclic join queries-the queries where traditional optimizers are suboptimal. On the remaining, less complex queries in the LUBM benchmark, we show that three classic query optimization techniques enable EmptyHeaded to compete with RDF engines, even when there is no asymptotic advantage to the worst-case optimal approach. We validate that our design has merit as EmptyHeaded outperforms MonetDB by three orders of magnitude and LogicBlox by two orders of magnitude, while remaining within an order of magnitude of RDF-3X and TripleBit

    Join Execution Using Fragmented Columnar Indices on GPU and MIC

    Full text link
    The paper describes an approach to the parallel natural join execution on computing clusters with GPU and MIC Coprocessors. This approach is based on a decomposition of natural join relational operator using the column indices and domain-interval fragmentation. This decomposition admits parallel executing the resource-intensive relational operators without data transfers. All column index fragments are stored in main memory. To process the join of two relations, each pair of index fragments corresponding to particular domain interval is joined on a separate processor core. Described approach allows efficient parallel query processing for very large databases on modern computing cluster systems with many-core accelerators. A prototype of the DBMS coprocessor system was implemented using this technique. The results of computational experiments for GPU and Xeon Phi are presented. These results confirm the efficiency of proposed approach
    corecore