20,368 research outputs found

    Transformation-Based Bottom-Up Computation of the Well-Founded Model

    Full text link
    We present a framework for expressing bottom-up algorithms to compute the well-founded model of non-disjunctive logic programs. Our method is based on the notion of conditional facts and elementary program transformations studied by Brass and Dix for disjunctive programs. However, even if we restrict their framework to nondisjunctive programs, their residual program can grow to exponential size, whereas for function-free programs our program remainder is always polynomial in the size of the extensional database (EDB). We show that particular orderings of our transformations (we call them strategies) correspond to well-known computational methods like the alternating fixpoint approach, the well-founded magic sets method and the magic alternating fixpoint procedure. However, due to the confluence of our calculi, we come up with computations of the well-founded model that are provably better than these methods. In contrast to other approaches, our transformation method treats magic set transformed programs correctly, i.e. it always computes a relevant part of the well-founded model of the original program.Comment: 43 pages, 3 figure

    Towards Intelligent Databases

    Get PDF
    This article is a presentation of the objectives and techniques of deductive databases. The deductive approach to databases aims at extending with intensional definitions other database paradigms that describe applications extensionaUy. We first show how constructive specifications can be expressed with deduction rules, and how normative conditions can be defined using integrity constraints. We outline the principles of bottom-up and top-down query answering procedures and present the techniques used for integrity checking. We then argue that it is often desirable to manage with a database system not only database applications, but also specifications of system components. We present such meta-level specifications and discuss their advantages over conventional approaches

    Disjunctive ASP with Functions: Decidable Queries and Effective Computation

    Get PDF
    Querying over disjunctive ASP with functions is a highly undecidable task in general. In this paper we focus on disjunctive logic programs with stratified negation and functions under the stable model semantics (ASP^{fs}). We show that query answering in this setting is decidable, if the query is finitely recursive (ASP^{fs}_{fr}). Our proof yields also an effective method for query evaluation. It is done by extending the magic set technique to ASP^{fs}_{fr}. We show that the magic-set rewritten program is query equivalent to the original one (under both brave and cautious reasoning). Moreover, we prove that the rewritten program is also finitely ground, implying that it is decidable. Importantly, finitely ground programs are evaluable using existing ASP solvers, making the class of ASP^{fs}_{fr} queries usable in practice.Comment: 16 pages, 1 figur

    Upside-down Deduction

    Get PDF
    Over the recent years, several proposals were made to enhance database systems with automated reasoning. In this article we analyze two such enhancements based on meta-interpretation. We consider on the one hand the theorem prover Satchmo, on the other hand the Alexander and Magic Set methods. Although they achieve different goals and are based on distinct reasoning paradigms, Satchmo and the Alexander or Magic Set methods can be similarly described by upside-down meta-interpreters, i.e., meta-interpreters implementing one reasoning principle in terms of the other. Upside-down meta-interpretation gives rise to simple and efficient implementations, but has not been investigated in the past. This article is devoted to studying this technique. We show that it permits one to inherit a search strategy from an inference engine, instead of implementing it, and to combine bottom-up and top-down reasoning. These properties yield an explanation for the efficiency of Satchmo and a justification for the unconventional approach to top-down reasoning of the Alexander and Magic Set methods

    The PITA System: Tabling and Answer Subsumption for Reasoning under Uncertainty

    Full text link
    Many real world domains require the representation of a measure of uncertainty. The most common such representation is probability, and the combination of probability with logic programs has given rise to the field of Probabilistic Logic Programming (PLP), leading to languages such as the Independent Choice Logic, Logic Programs with Annotated Disjunctions (LPADs), Problog, PRISM and others. These languages share a similar distribution semantics, and methods have been devised to translate programs between these languages. The complexity of computing the probability of queries to these general PLP programs is very high due to the need to combine the probabilities of explanations that may not be exclusive. As one alternative, the PRISM system reduces the complexity of query answering by restricting the form of programs it can evaluate. As an entirely different alternative, Possibilistic Logic Programs adopt a simpler metric of uncertainty than probability. Each of these approaches -- general PLP, restricted PLP, and Possibilistic Logic Programming -- can be useful in different domains depending on the form of uncertainty to be represented, on the form of programs needed to model problems, and on the scale of the problems to be solved. In this paper, we show how the PITA system, which originally supported the general PLP language of LPADs, can also efficiently support restricted PLP and Possibilistic Logic Programs. PITA relies on tabling with answer subsumption and consists of a transformation along with an API for library functions that interface with answer subsumption

    Super Logic Programs

    Full text link
    The Autoepistemic Logic of Knowledge and Belief (AELB) is a powerful nonmonotic formalism introduced by Teodor Przymusinski in 1994. In this paper, we specialize it to a class of theories called `super logic programs'. We argue that these programs form a natural generalization of standard logic programs. In particular, they allow disjunctions and default negation of arbibrary positive objective formulas. Our main results are two new and powerful characterizations of the static semant ics of these programs, one syntactic, and one model-theoretic. The syntactic fixed point characterization is much simpler than the fixed point construction of the static semantics for arbitrary AELB theories. The model-theoretic characterization via Kripke models allows one to construct finite representations of the inherently infinite static expansions. Both characterizations can be used as the basis of algorithms for query answering under the static semantics. We describe a query-answering interpreter for super programs which we developed based on the model-theoretic characterization and which is available on the web.Comment: 47 pages, revised version of the paper submitted 10/200
    • …
    corecore