744 research outputs found

    Using correlation matrix memories for inferencing in expert systems

    Get PDF
    Outline of The Chapter… Section 16.2 describes CMM and the Dynamic Variable Binding Problem. Section 16.3 deals with how CMM is used as part of an inferencing engine. Section 16.4 details the important performance characteristics of CMM

    Inferring Complex Activities for Context-aware Systems within Smart Environments

    Get PDF
    The rising ageing population worldwide and the prevalence of age-related conditions such as physical fragility, mental impairments and chronic diseases have significantly impacted the quality of life and caused a shortage of health and care services. Over-stretched healthcare providers are leading to a paradigm shift in public healthcare provisioning. Thus, Ambient Assisted Living (AAL) using Smart Homes (SH) technologies has been rigorously investigated to help address the aforementioned problems. Human Activity Recognition (HAR) is a critical component in AAL systems which enables applications such as just-in-time assistance, behaviour analysis, anomalies detection and emergency notifications. This thesis is aimed at investigating challenges faced in accurately recognising Activities of Daily Living (ADLs) performed by single or multiple inhabitants within smart environments. Specifically, this thesis explores five complementary research challenges in HAR. The first study contributes to knowledge by developing a semantic-enabled data segmentation approach with user-preferences. The second study takes the segmented set of sensor data to investigate and recognise human ADLs at multi-granular action level; coarse- and fine-grained action level. At the coarse-grained actions level, semantic relationships between the sensor, object and ADLs are deduced, whereas, at fine-grained action level, object usage at the satisfactory threshold with the evidence fused from multimodal sensor data is leveraged to verify the intended actions. Moreover, due to imprecise/vague interpretations of multimodal sensors and data fusion challenges, fuzzy set theory and fuzzy web ontology language (fuzzy-OWL) are leveraged. The third study focuses on incorporating uncertainties caused in HAR due to factors such as technological failure, object malfunction, and human errors. Hence, existing studies uncertainty theories and approaches are analysed and based on the findings, probabilistic ontology (PR-OWL) based HAR approach is proposed. The fourth study extends the first three studies to distinguish activities conducted by more than one inhabitant in a shared smart environment with the use of discriminative sensor-based techniques and time-series pattern analysis. The final study investigates in a suitable system architecture with a real-time smart environment tailored to AAL system and proposes microservices architecture with sensor-based off-the-shelf and bespoke sensing methods. The initial semantic-enabled data segmentation study was evaluated with 100% and 97.8% accuracy to segment sensor events under single and mixed activities scenarios. However, the average classification time taken to segment each sensor events have suffered from 3971ms and 62183ms for single and mixed activities scenarios, respectively. The second study to detect fine-grained-level user actions was evaluated with 30 and 153 fuzzy rules to detect two fine-grained movements with a pre-collected dataset from the real-time smart environment. The result of the second study indicate good average accuracy of 83.33% and 100% but with the high average duration of 24648ms and 105318ms, and posing further challenges for the scalability of fusion rule creations. The third study was evaluated by incorporating PR-OWL ontology with ADL ontologies and Semantic-Sensor-Network (SSN) ontology to define four types of uncertainties presented in the kitchen-based activity. The fourth study illustrated a case study to extended single-user AR to multi-user AR by combining RFID tags and fingerprint sensors discriminative sensors to identify and associate user actions with the aid of time-series analysis. The last study responds to the computations and performance requirements for the four studies by analysing and proposing microservices-based system architecture for AAL system. A future research investigation towards adopting fog/edge computing paradigms from cloud computing is discussed for higher availability, reduced network traffic/energy, cost, and creating a decentralised system. As a result of the five studies, this thesis develops a knowledge-driven framework to estimate and recognise multi-user activities at fine-grained level user actions. This framework integrates three complementary ontologies to conceptualise factual, fuzzy and uncertainties in the environment/ADLs, time-series analysis and discriminative sensing environment. Moreover, a distributed software architecture, multimodal sensor-based hardware prototypes, and other supportive utility tools such as simulator and synthetic ADL data generator for the experimentation were developed to support the evaluation of the proposed approaches. The distributed system is platform-independent and currently supported by an Android mobile application and web-browser based client interfaces for retrieving information such as live sensor events and HAR results

    Machine Learning Meets the Semantic Web

    Get PDF
    Remarkable progress in research has shown the efficiency of Knowledge Graphs (KGs) in extracting valuable external knowledge in various domains. A Knowledge Graph (KG) can illustrate high-order relations that connect two objects with one or multiple related attributes. The emerging Graph Neural Networks (GNN) can extract both object characteristics and relations from KGs. This paper presents how Machine Learning (ML) meets the Semantic Web and how KGs are related to Neural Networks and Deep Learning. The paper also highlights important aspects of this area of research, discussing open issues such as the bias hidden in KGs at different levels of graph representation

    The Fourth International VLDB Workshop on Management of Uncertain Data

    Get PDF

    What Distinguishes Data from Models?

    Get PDF
    I propose a framework that explicates and distinguishes the epistemic roles of data and models within empirical inquiry through consideration of their use in scientific practice. After arguing that Suppes’ characterization of data models falls short in this respect, I discuss a case of data processing within exploratory research in plant phenotyping and use it to highlight the difference between practices aimed to make data usable as evidence and practices aimed to use data to represent a specific phenomenon. I then argue that whether a set of objects functions as data or models does not depend on intrinsic differences in their physical properties, level of abstraction or the degree of human intervention involved in generating them, but rather on their distinctive roles towards identifying and characterizing the targets of investigation. The paper thus proposes a characterization of data models that builds on Suppes’ attention to data practices, without however needing to posit a fixed hierarchy of data and models or a highly exclusionary definition of data models as statistical constructs

    What Distinguishes Data from Models?

    Get PDF
    This is the final version. Available on open access from Springer Verlag via the DOI in this recordI propose a framework that explicates and distinguishes the epistemic roles of data and models within empirical inquiry through consideration of their use in scientific practice. After arguing that Suppes’ characterization of data models falls short in this respect, I discuss a case of data processing within exploratory research in plant phenotyping and use it to highlight the difference between practices aimed to make data usable as evidence and practices aimed to use data to represent a specific phenomenon. I then argue that whether a set of objects functions as data or models does not depend on intrinsic differences in their physical properties, level of abstraction or the degree of human intervention involved in generating them, but rather on their distinctive roles towards identifying and characterizing the targets of investigation. The paper thus proposes a characterization of data models that builds on Suppes’ attention to data practices, without however needing to posit a fixed hierarchy of data and models or a highly exclusionary definition of data models as statistical constructs.European CommissionAustralian Research Counci
    • …
    corecore