23,454 research outputs found

    Ontology-Based Data Access and Integration

    Get PDF
    An ontology-based data integration (OBDI) system is an information management system consisting of three components: an ontology, a set of data sources, and the mapping between the two. The ontology is a conceptual, formal description of the domain of interest to a given organization (or a community of users), expressed in terms of relevant concepts, attributes of concepts, relationships between concepts, and logical assertions characterizing the domain knowledge. The data sources are the repositories accessible by the organization where data concerning the domain are stored. In the general case, such repositories are numerous, heterogeneous, each one managed and maintained independently from the others. The mapping is a precise specification of the correspondence between the data contained in the data sources and the elements of the ontology. The main purpose of an OBDI system is to allow information consumers to query the data using the elements in the ontology as predicates. In the special case where the organization manages a single data source, the term ontology-based data access (ODBA) system is used

    Finding Top-k Dominance on Incomplete Big Data Using Map-Reduce Framework

    Full text link
    Incomplete data is one major kind of multi-dimensional dataset that has random-distributed missing nodes in its dimensions. It is very difficult to retrieve information from this type of dataset when it becomes huge. Finding top-k dominant values in this type of dataset is a challenging procedure. Some algorithms are present to enhance this process but are mostly efficient only when dealing with a small-size incomplete data. One of the algorithms that make the application of TKD query possible is the Bitmap Index Guided (BIG) algorithm. This algorithm strongly improves the performance for incomplete data, but it is not originally capable of finding top-k dominant values in incomplete big data, nor is it designed to do so. Several other algorithms have been proposed to find the TKD query, such as Skyband Based and Upper Bound Based algorithms, but their performance is also questionable. Algorithms developed previously were among the first attempts to apply TKD query on incomplete data; however, all these had weak performances or were not compatible with the incomplete data. This thesis proposes MapReduced Enhanced Bitmap Index Guided Algorithm (MRBIG) for dealing with the aforementioned issues. MRBIG uses the MapReduce framework to enhance the performance of applying top-k dominance queries on huge incomplete datasets. The proposed approach uses the MapReduce parallel computing approach using multiple computing nodes. The framework separates the tasks between several computing nodes that independently and simultaneously work to find the result. This method has achieved up to two times faster processing time in finding the TKD query result in comparison to previously presented algorithms

    Learning a Neural Semantic Parser from User Feedback

    Full text link
    We present an approach to rapidly and easily build natural language interfaces to databases for new domains, whose performance improves over time based on user feedback, and requires minimal intervention. To achieve this, we adapt neural sequence models to map utterances directly to SQL with its full expressivity, bypassing any intermediate meaning representations. These models are immediately deployed online to solicit feedback from real users to flag incorrect queries. Finally, the popularity of SQL facilitates gathering annotations for incorrect predictions using the crowd, which is directly used to improve our models. This complete feedback loop, without intermediate representations or database specific engineering, opens up new ways of building high quality semantic parsers. Experiments suggest that this approach can be deployed quickly for any new target domain, as we show by learning a semantic parser for an online academic database from scratch.Comment: Accepted at ACL 201

    Learning Tuple Probabilities

    Get PDF
    Learning the parameters of complex probabilistic-relational models from labeled training data is a standard technique in machine learning, which has been intensively studied in the subfield of Statistical Relational Learning (SRL), but---so far---this is still an under-investigated topic in the context of Probabilistic Databases (PDBs). In this paper, we focus on learning the probability values of base tuples in a PDB from labeled lineage formulas. The resulting learning problem can be viewed as the inverse problem to confidence computations in PDBs: given a set of labeled query answers, learn the probability values of the base tuples, such that the marginal probabilities of the query answers again yield in the assigned probability labels. We analyze the learning problem from a theoretical perspective, cast it into an optimization problem, and provide an algorithm based on stochastic gradient descent. Finally, we conclude by an experimental evaluation on three real-world and one synthetic dataset, thus comparing our approach to various techniques from SRL, reasoning in information extraction, and optimization

    Benchmarking Summarizability Processing in XML Warehouses with Complex Hierarchies

    Full text link
    Business Intelligence plays an important role in decision making. Based on data warehouses and Online Analytical Processing, a business intelligence tool can be used to analyze complex data. Still, summarizability issues in data warehouses cause ineffective analyses that may become critical problems to businesses. To settle this issue, many researchers have studied and proposed various solutions, both in relational and XML data warehouses. However, they find difficulty in evaluating the performance of their proposals since the available benchmarks lack complex hierarchies. In order to contribute to summarizability analysis, this paper proposes an extension to the XML warehouse benchmark (XWeB) with complex hierarchies. The benchmark enables us to generate XML data warehouses with scalable complex hierarchies as well as summarizability processing. We experimentally demonstrated that complex hierarchies can definitely be included into a benchmark dataset, and that our benchmark is able to compare two alternative approaches dealing with summarizability issues.Comment: 15th International Workshop on Data Warehousing and OLAP (DOLAP 2012), Maui : United States (2012

    Fast and Simple Relational Processing of Uncertain Data

    Full text link
    This paper introduces U-relations, a succinct and purely relational representation system for uncertain databases. U-relations support attribute-level uncertainty using vertical partitioning. If we consider positive relational algebra extended by an operation for computing possible answers, a query on the logical level can be translated into, and evaluated as, a single relational algebra query on the U-relation representation. The translation scheme essentially preserves the size of the query in terms of number of operations and, in particular, number of joins. Standard techniques employed in off-the-shelf relational database management systems are effective for optimizing and processing queries on U-relations. In our experiments we show that query evaluation on U-relations scales to large amounts of data with high degrees of uncertainty.Comment: 12 pages, 14 figure
    corecore