15,226 research outputs found

    Towards an Efficient Evaluation of General Queries

    Get PDF
    Database applications often require to evaluate queries containing quantifiers or disjunctions, e.g., for handling general integrity constraints. Existing efficient methods for processing quantifiers depart from the relational model as they rely on non-algebraic procedures. Looking at quantified query evaluation from a new angle, we propose an approach to process quantifiers that makes use of relational algebra operators only. Our approach performs in two phases. The first phase normalizes the queries producing a canonical form. This form permits to improve the translation into relational algebra performed during the second phase. The improved translation relies on a new operator - the complement-join - that generalizes the set difference, on algebraic expressions of universal quantifiers that avoid the expensive division operator in many cases, and on a special processing of disjunctions by means of constrained outer-joins. Our method achieves an efficiency at least comparable with that of previous proposals, better in most cases. Furthermore, it is considerably simpler to implement as it completely relies on relational data structures and operators

    Old Techniques for New Join Algorithms: A Case Study in RDF Processing

    Full text link
    Recently there has been significant interest around designing specialized RDF engines, as traditional query processing mechanisms incur orders of magnitude performance gaps on many RDF workloads. At the same time researchers have released new worst-case optimal join algorithms which can be asymptotically better than the join algorithms in traditional engines. In this paper we apply worst-case optimal join algorithms to a standard RDF workload, the LUBM benchmark, for the first time. We do so using two worst-case optimal engines: (1) LogicBlox, a commercial database engine, and (2) EmptyHeaded, our prototype research engine with enhanced worst-case optimal join algorithms. We show that without any added optimizations both LogicBlox and EmptyHeaded outperform two state-of-the-art specialized RDF engines, RDF-3X and TripleBit, by up to 6x on cyclic join queries-the queries where traditional optimizers are suboptimal. On the remaining, less complex queries in the LUBM benchmark, we show that three classic query optimization techniques enable EmptyHeaded to compete with RDF engines, even when there is no asymptotic advantage to the worst-case optimal approach. We validate that our design has merit as EmptyHeaded outperforms MonetDB by three orders of magnitude and LogicBlox by two orders of magnitude, while remaining within an order of magnitude of RDF-3X and TripleBit

    An Algebraic Approach to XQuery Optimization

    Get PDF
    As more data is stored in XML and more applications need to process this data, XML query optimization becomes performance critical. While optimization techniques for relational databases have been developed over the last thirty years, the optimization of XML queries poses new challenges. Query optimizers for XQuery, the standard query language for XML data, need to consider both document order and sequence order. Nevertheless, algebraic optimization proved powerful in query optimizers in relational and object oriented databases. Thus, this dissertation presents an algebraic approach to XQuery optimization. In this thesis, an algebra over sequences is presented that allows for a simple translation of XQuery into this algebra. The formal definitions of the operators in this algebra allow us to reason formally about algebraic optimizations. This thesis leverages the power of this formalism when unnesting nested XQuery expressions. In almost all cases unnesting nested queries in XQuery reduces query execution times from hours to seconds or milliseconds. Moreover, this dissertation presents three basic algebraic patterns of nested queries. For every basic pattern a decision tree is developed to select the most effective unnesting equivalence for a given query. Query unnesting extends the search space that can be considered during cost-based optimization of XQuery. As a result, substantially more efficient query execution plans may be detected. This thesis presents two more important cases where the number of plan alternatives leads to substantially shorter query execution times: join ordering and reordering location steps in path expressions. Our algebraic framework detects cases where document order or sequence order is destroyed. However, state-of-the-art techniques for order optimization in cost-based query optimizers have efficient mechanisms to repair order in these cases. The results obtained for query unnesting and cost-based optimization of XQuery underline the need for an algebraic approach to XQuery optimization for efficient XML query processing. Moreover, they are applicable to optimization in relational databases where order semantics are considered

    Object-oriented querying of existing relational databases

    Get PDF
    In this paper, we present algorithms which allow an object-oriented querying of existing relational databases. Our goal is to provide an improved query interface for relational systems with better query facilities than SQL. This seems to be very important since, in real world applications, relational systems are most commonly used and their dominance will remain in the near future. To overcome the drawbacks of relational systems, especially the poor query facilities of SQL, we propose a schema transformation and a query translation algorithm. The schema transformation algorithm uses additional semantic information to enhance the relational schema and transform it into a corresponding object-oriented schema. If the additional semantic information can be deducted from an underlying entity-relationship design schema, the schema transformation may be done fully automatically. To query the created object-oriented schema, we use the Structured Object Query Language (SOQL) which provides declarative query facilities on objects. SOQL queries using the created object-oriented schema are much shorter, easier to write and understand and more intuitive than corresponding S Q L queries leading to an enhanced usability and an improved querying of the database. The query translation algorithm automatically translates SOQL queries into equivalent SQL queries for the original relational schema
    • 

    corecore